Description Usage Arguments Value Note Author(s) References See Also Examples
Generates a matrix of dimensions dim(U)
with
induced correlations. Blocks of variables are randomly assigned and
correlations are induced. A noise matrix is applied
to the final matrix to perturb 'perfect' correlations.
1 | create.corr.matrix(U, k = 4, min.block.size = 2, max.block.size = 5)
|
U |
Numeric matrix |
k |
Correlation Perturbation - The higher k, the more the data
is perturbed. Default |
min.block.size |
minimum number of variables to correlate
Default |
max.block.size |
maximum number of variables to correlate
Default |
A numberic matrix of dimension dim(U)
with correlations induced
between variables
Output does not contain classes, may provide externally as classes are irrelevant in this function.
Charles E. Determan Jr.
Wongravee, K., Lloyd, G R., Hall, J., Holmboe, M. E., & Schaefer, M. L. (2009). Monte-Carlo methods for determining optimal number of significant variables. Application to mouse urinary profiles. Metabolomics, 5(4), 387-406. http://dx.doi.org/10.1007/s11306-009-0164-4
create.random.matrix
,
create.discr.matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | # Create Multivariate Matrices
# Random Multivariate Matrix
# 50 variables, 100 samples, 1 standard devation, 0.2 noise factor
rand.mat <- create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)
# Induce correlations in a numeric matrix
# Default settings
# minimum and maximum block sizes (min.block.size = 2, max.block.size = 5)
# default correlation purturbation (k=4)
# see ?create.corr.matrix for citation for methods
corr.mat <- create.corr.matrix(rand.mat)
# Induce Discriminatory Variables
# 10 discriminatory variables (D = 10)
# default discrimination level (l = 1.5)
# default number of groups (num.groups=2)
# default correlation purturbation (k = 4)
dat.discr <- create.discr.matrix(corr.mat, D=10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.