Description Usage Arguments Value Author(s) References Examples
Applies Monte Carlo permutations to user specified models.
The user can either use the results
from fs.stability
or provide specified model parameters.
1 2 3 |
fs.model |
Object containing results from |
X |
A scaled matrix or dataframe containing numeric values of each feature |
Y |
A factor vector containing group membership of samples |
method |
A string of the model to be fit.
Available options are |
k.folds |
How many and what fractions of dataset held-out for prediction (i.e. 3 = 1/3, 10 = 1/10, etc.) |
metric |
Performance metric to assess. Available options
are |
nperm |
Number of permutations, default |
allowParallel |
Logical argument dictating if parallel processing
is allowed via foreach package. Default |
create.plot |
Logical argument whether to create a distribution plot of permuation results. |
verbose |
Logical argument whether output printed automatically
in 'pretty' format. Default |
... |
Extra arguments that the user would like to apply to the models |
p.value |
Resulting p-value of permuation test |
Charles Determan Jr.
Guo Y., et. al. (2010) Sample size and statistical power considerations in high-dimensionality data settings: a comparative study of classification algorithms. BMC Bioinformatics 11:447.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | dat.discr <- create.discr.matrix(
create.corr.matrix(
create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),
D = 10
)
vars <- dat.discr$discr.mat
groups <- dat.discr$classes
fits <- fs.stability(vars,
groups,
method = c("plsda", "rf"),
f = 10,
k = 3,
k.folds = 10,
verbose = 'none')
perm.class(fits, vars, groups, "rf", k.folds=5,
metric="Accuracy", nperm=10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.