Description Usage Arguments Value Author(s) References Examples
Applies Monte Carlo permutations to user specified models.
The user can either use the results from fs.stability
or provide
specified model parameters.
1 2 | perm.features(fs.model = NULL, X, Y, method, sig.level = 0.05, nperm = 10,
allowParallel = FALSE, verbose = TRUE, ...)
|
fs.model |
Object containing results from |
X |
A scaled matrix or dataframe containing numeric values of each feature |
Y |
A factor vector containing group membership of samples |
method |
A vector listing models to be fit.
Available options are |
sig.level |
Desired significance level for features,
default |
nperm |
Number of permutations, default |
allowParallel |
Logical argument dictating if parallel processing
is allowed via foreach package.
Default |
verbose |
Logical argument whether output printed automatically in 'pretty' format. |
... |
Extra arguments that the user would like to apply to the models |
sig.level |
User-specified significance level |
num.sig.features |
Number of significant features |
sig.features |
Dataframe of significant features |
Charles Determan Jr.
Wongravee K., et. al. (2009) Monte-Carlo methods for determining optimal number of significant variables. Application to mouse urinary profiles. Metabolomics 5:387-406.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | dat.discr <- create.discr.matrix(
create.corr.matrix(
create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),
D = 10
)
vars <- dat.discr$discr.mat
groups <- dat.discr$classes
fits <- fs.stability(vars,
groups,
method = c("plsda", "rf"),
f = 10,
k = 3,
k.folds = 10,
verbose = 'none')
# permute variables/features
perm.features(fits, vars, groups, "rf",
sig.level = .05, nperm = 10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.