Description Usage Arguments Value Author(s) References See Also Examples
Generates a matrix of dimensions nvar
by
nsamp
consisting of random numbers generated from a normal
distriubtion. This normal distribution is then perturbed to more
accurately reflect experimentally acquired multivariate data.
1 | create.random.matrix(nvar, nsamp, st.dev = 1, perturb = 0.2)
|
nvar |
Number of features (i.e. variables) |
nsamp |
Number of samples |
st.dev |
The variation (i.e. standard deviation) that is typical
in datasets of interest to the user. Default |
perturb |
The amount of perturbation to the normal distribution.
Default |
Matrix of dimension nvar
by nsamp
Charles E. Determan Jr.
Wongravee, K., Lloyd, G R., Hall, J., Holmboe, M. E., & Schaefer, M. L. (2009). Monte-Carlo methods for determining optimal number of significant variables. Application to mouse urinary profiles. Metabolomics, 5(4), 387-406. http://dx.doi.org/10.1007/s11306-009-0164-4
create.corr.matrix
, create.discr.matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | # Create Multivariate Matrices
# Random Multivariate Matrix
# 50 variables, 100 samples, 1 standard devation, 0.2 noise factor
rand.mat <- create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)
# Induce correlations in a numeric matrix
# Default settings
# minimum and maximum block sizes (min.block.size = 2, max.block.size = 5)
# default correlation purturbation (k=4)
# see ?create.corr.matrix for citation for methods
corr.mat <- create.corr.matrix(rand.mat)
# Induce Discriminatory Variables
# 10 discriminatory variables (D = 10)
# default discrimination level (l = 1.5)
# default number of groups (num.groups=2)
# default correlation purturbation (k = 4)
dat.discr <- create.discr.matrix(corr.mat, D=10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.