Description Usage Arguments Details Value Examples
Simulation of M random variables from a mixture of two Gaussian or Gamma distributions
1 | mixture.sim(M, density.phi, param)
|
M |
number of simulated variables |
density.phi |
name of the chosen density 'mixture.normal' or 'mixture.gamma' |
param |
vector of parameters with the proportion of mixture of the two distributions and means and standard-deviations of the two normal or shapes and scales of the two Gamma distribution |
If 'mixture.normal', the distribution is p N(μ1,σ1^2) + (1-p)N(μ2, σ2^2)
and param=c(p, μ1, σ1, μ2, σ2)
If 'mixture.gamma', the distribution is p Gamma(shape1,scale1) + (1-p)Gamma(shape2,scale2)
and param=c(p, shape1, scale1, shape2, scale2)
Y |
vector of simulated variables |
1 2 3 4 5 6 7 8 9 10 | density.phi <- 'mixture.gamma'
param <- c(0.2,1.8,0.5,5.05,1); M <- 200
gridf <- seq(0, 8, length = 200)
f <- param[1] * 1/gamma(param[2]) * (gridf)^(param[2]-1) *
exp(-(gridf) / param[3]) / param[3]^param[2] +
(1-param[1]) * 1/gamma(param[4]) * (gridf)^(param[4]-1) *
exp(-(gridf) / param[5]) / param[5]^param[4]
Y <- mixture.sim(M, density.phi, param)
hist(Y)
lines(gridf, f)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.