Description Usage Format Source References Examples
The neuronal.data
data has 240 measurements of the membrane potential in volts for one single neuron of a pig between the spikes, along time, with 2000 points for each. The step time is delta= 0.00015 s.
1 |
This data frame has a list form of length 2. The first element in the matrix named Xreal
. Each row is a trajectory, that one can model by a diffusion process with random effect. The realisation can be assumed independent. The second element is a vector of times of observations times
The parameters of the stochastic leaky integrate-and-fire neuronal model. Lansky, P., Sanda, P. and He, J. (2006). Journal of Computational Neuroscience Vol 21, 211–223
The parameters of the stochastic leaky integrate-and-fire neuronal model. Lansky, P., Sanda, P. and He, J. (2006). Journal of Computational Neuroscience Vol 21, 211–223
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | model <- "OU"
random <- c(1,2)
M <- 240 # number of trajectories, number of rows of the matrix of the data
T <- 0.3 # width of the interval of observation
delta <- 0.00015 # step time
N <- T/delta # number of points in the time interval 2000
data(neuronal.data)
# reduction of data for example to save running times
ind <- seq(1, 2000, by = 20)
X <- neuronal.data[[1]][1:100, ind]
times <- neuronal.data[[2]][ind]
# plot(times, X[10, ], type = 'l', xlab = 'time', ylab = '', col = 'blue', ylim = c(0,0.016))
random <- c(1,2)
#- nonparametric estimation
estim.method <- 'nonparam'
estim <- mixedsde.fit(times=times, X=X, model=model, random=random, estim.method='nonparam')
#- parametric estimation
estim.method<-'paramML'
estim_param <- mixedsde.fit(times=times, X=X, model=model, random= random, estim.method= 'paramML')
#- implemented methods
# plot(estim);
print(estim); #valid(estim)
print(estim_param); #plot(estim_param); valid(estim_param)
#test1 <- pred(estim)
#test2 <- pred(estim_param)
#- Other possible plots
par(mfrow=c(1,2))
outputsNP <- out(estim)
outputsP <- out(estim_param)
fhat <- outputsNP$estimf
fhat_param <- outputsP$estimf
gridf <- outputsNP$gridf
gridf1 <- gridf[1,]; gridf2 <- gridf[2,]
marg1 <- ((max(gridf2)-min(gridf2))/length(gridf2))*apply(fhat,1,sum) #with cutoff
marg2 <- ((max(gridf1)-min(gridf1))/length(gridf1))*apply(fhat,2,sum)
marg1_param <- ((max(gridf2)-min(gridf2))/length(gridf2))*apply(fhat_param,1,sum)
marg2_param <- ((max(gridf1)-min(gridf1))/length(gridf1))*apply(fhat_param,2,sum)
plot(gridf1,marg1,type='l', col='red')
lines(gridf1,marg1_param, lwd=2, col='red')
plot(gridf2, marg2,type='l', col='red')
lines(gridf2,marg2_param, lwd=2, col='red')
# Bayesian
# reduction of data to save running time
estim_Bayes <- mixedsde.fit(times, X[1:20,], model = "OU", random = 1,
estim.method = "paramBayes", nMCMC = 100)
plot(estim_Bayes)
pred_Bayes1 <- pred(estim_Bayes)
pred_Bayes2 <- pred(estim_Bayes, trajectories = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.