fun_data_prep <- function(data, contrasts.arg=NULL, meta=NULL, sep='.') {
### compare with input meta if given ###
if (!is.null(meta[['num.vec']]) | !is.null(meta[['catg.vec']])) {
varnow.vec <- names(data)
varinp.vec <- c(meta[['num.vec']],meta[['catg.vec']])
var1.vec <- varnow.vec[!varnow.vec%in%varinp.vec]
var2.vec <- varinp.vec[!varinp.vec%in%varnow.vec]
# new colmun in current data
if (length(var1.vec)>0) {
if (class(data)[1]=='data.table') {
data[, (var1.vec):=NULL]
} else {
data[,var1.vec] <- NULL
}
}
# current data is lacking column
if (length(var2.vec)>0) {
if (class(data)[1]=='data.table') {
data[, (var2.vec):=NA]
} else {
data[,var2.vec] <- NA
}
warning(paste('Following columns are populated with NAs: ',
paste(var2.vec,collapse=', '), sep='\n'))
}
}
### prepare meta info ###
class.lst <- lapply(data, class)
#class.vec <- sapply(class.lst, function(x) paste(x,collapse=' '))
num.vec <- names(class.lst)[class.lst%in%c('numeric','integer')]
catg.vec <- names(class.lst)[!class.lst%in%c('numeric','integer')]
catg.index <- which(names(data)%in%catg.vec)
factor.index <- which(class.lst%like% "factor")
### add sep for catg var ###
if (!is.null(sep)) {
names(data)[names(data)%in%catg.vec] <- paste0(names(data)[names(data)%in%catg.vec], sep)
}
### if contrasts.arg not given: change to factor & generate contrasts ###
if (is.null(contrasts.arg)) {
# col index to be turned into factor
changeclass.index <- catg.index[!catg.index%in%factor.index]
if (class(data)[1]=='data.table') {
if (length(changeclass.index)>0) {
data[, (changeclass.index):=lapply(.SD,as.factor), .SDcols=changeclass.index]
}
contra.lst <- lapply(data[,catg.index,with=FALSE], contrasts, contrasts=FALSE)
} else {
if (length(changeclass.index)>0) {
data[,changeclass.index] <- lapply(df[,changeclass.index], as.factor)
}
contra.lst <- lapply(data[,catg.index], contrasts, contrasts=FALSE)
}
### if contrasts.arg given: change to factor with forced levels ###
} else {
contra.lst <- contrasts.arg
if (class(data)[1]=='data.table') {
x <- data[, catg.index, with=FALSE]
data[, (catg.index):=lapply(seq_along(.SD),function(i)
factor(.SD[[i]],levels=rownames(contra.lst[[names(.SD)[[i]]]]))), .SDcols=catg.index]
} else {
x <- data[, catg.index]
data[,catg.index] <- lapply(seq_along(x), function(i)
factor(x[[i]],levels=rownames(contra.lst[[names(x)[[i]]]])))
}
# catg feature with new level
notin.list <- lapply(
seq_along(x), function(i)
as.character(unique(x[[i]]))[ !
as.character(unique(x[[i]]))%in%rownames(contra.lst[[names(x)[i]]]) ])
names(notin.list) <- paste0(catg.vec, sep)
notin.vec <- sapply(notin.list, length)
notin.vec <- notin.vec[notin.vec>0]
}
### generate one hot sql ###
onehot_sql <- 'put one hot encoding script here'
### model matrix ###
data.mat <- model.matrix(~., model.frame(~., data, na.action=na.pass),
contrasts.arg=contra.lst)
attr(data.mat,'assign') <- NULL
attr(data.mat,'contrasts') <- NULL
if (exists("notin.vec")) {
if (length(notin.vec)>0) {
for (i in 1:length(notin.vec)) {
data.mat[as.character(x[[names(notin.vec)[i]]])%in%notin.list[[names(notin.vec)[i]]],
grep(paste0(names(notin.vec)[i],sep),colnames(data.mat))] <- 0
}
}
}
### output ###
out.lst <- list()
out.lst[['meta']] <- list('num.vec'=num.vec, 'catg.vec'=catg.vec)
out.lst[['contrasts']] <- contra.lst
out.lst[['sql']] <- onehot_sql
out.lst[['model.matrix']] <- data.mat
return(out.lst)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.