#' Compute ECs based on growth stages which are estimated based on accumulated
#' GDD in each environment.
#'
#' @description
#' This function enables to retrieve daily weather data for each
#' environment and derive environmental covariates over non-overlapping time
#' windows, which can be defined in various ways by the user.
#'
#' @param table_daily_W \code{data.frame} Object returned by the function
#' [get_daily_tables_per_env()]
#'
#' @param crop_model \code{character} Name of the crop model used to estimate
#' the times of the crop stages based on temperature sum accumulation.
#' Current options are `maizehybrid1700` and `hardwheatUS`. Growing degree
#' days are utilized to delineate maize phenology.
#'
#' @param method_GDD_calculation \code{character} Method used to compute the
#' GDD value, with one out of \code{method_a} or \code{method_b}. \cr
#' \code{method_a}: No change of the value of \eqn{T_{min}}.
#' GDD = \eqn{max (\frac{T_{min}+T_{max}}{2} - T_{base},0)}. \cr
#' \code{method_b}: If \eqn{T_{min}} < \eqn{T_{base}}, change \eqn{T_{min}}
#' to \eqn{T_{min}} = \eqn{T_{base}}. \cr
#' Default = \code{method_b}.
#'
#' @return An object of class \code{data.frame} with
#' 10 x number_total_fixed_windows + 1 last column (IDenv):
#' \enumerate{
#' \item mean_TMIN: number_total_fixed_windows columns, indicating the
#' average minimal temperature over the respective day-window.
#' \item mean_TMAX: number_total_fixed_windows columns, indicating the
#' average maximal temperature over the respective day-window.
#' \item mean_TMEAN: number_total_fixed_windows columns, indicating the
#' average mean temperature over the respective day-window.
#' \item freq_TMAX_sup30: number_total_fixed_windows columns, indicating the
#' frequency of days with maximum temperature over 30°C over the respective
#' day-window.
#' \item freq_TMAX_sup35: number_total_fixed_windows columns, indicating the
#' frequency of days with maximum temperature over 35°C over the respective
#' day-window.
#' \item sum_PTT: number_total_fixed_windows columns, indicating the
#' accumulated photothermal time over the respective day-window.
#' \item sum_P: number_total_fixed_windows columns, indicating the
#' accumulated precipitation over the respective day-window.
#' \item sum_et0: number_total_fixed_windows columns, indicating the
#' cumulative reference evapotranspiration over the respective day-window.
#' \item freq_P_sup10: number_total_fixed_windows columns, indicating the
#' frequency of days with total precipitation superior to 10 mm over the
#' respective day-window.
#' \item sum_solar_radiation: number_total_fixed_windows columns, indicating
#' the accumulated incoming solar radiation over the respective day-window.
#' \item mean_vapr_deficit: number_total_fixed_windows columns, indicating
#' the mean vapour pressure deficit over the respective day-window.
#' \item IDenv \code{character} ID of the environment (Location_Year)
#' }
#' @author Cathy C. Westhues \email{cathy.jubin@@hotmail.com}
#' @export
compute_EC_gdd <- function(table_daily_W,
crop_model = NULL,
method_GDD_calculation =
c("method_b"),
capped_max_temperature = F,
...) {
checkmate::assert_character(crop_model)
checkmate::assert_names(
colnames(table_daily_W),
must.include = c("T2M_MIN",
"T2M_MAX"
))
table_daily_W <-
table_daily_W[order(as.Date(table_daily_W$YYYYMMDD)), ]
table_gdd <- learnMET:::gdd_information(crop_model = crop_model)[[1]]
base_temperature <- learnMET:::gdd_information(crop_model = crop_model)[[2]]
if (crop_model %in% c("barley_hawn")) {
max_temperature1 <- learnMET:::gdd_information(crop_model = crop_model)[[3]]
max_temperature2 <-
learnMET:::gdd_information(crop_model = crop_model)[[4]]
stage_change_max_temp <-
learnMET:::gdd_information(crop_model = crop_model)[[5]]
}
else{
max_temperature <- learnMET:::gdd_information(crop_model = crop_model)[[3]]
}
# Calculation GDD
table_daily_W$TMIN_GDD <- table_daily_W$T2M_MIN
table_daily_W$TMAX_GDD <- table_daily_W$T2M_MAX
if (method_GDD_calculation == "method_b") {
# Method b: when the minimum temperature T_min is below the T_base:
# Any temperature below T_base is set to T_base before calculating the
# average. https://en.wikipedia.org/wiki/Growing_degree-day
table_daily_W$TMIN_GDD[table_daily_W$TMIN_GDD < base_temperature] <-
base_temperature
table_daily_W$TMAX_GDD[table_daily_W$TMAX_GDD < base_temperature] <-
base_temperature
}
if (crop_model %in% c("barley_hawn")) {
table_daily_W$TMAX_GDD_before_2 <- table_daily_W$TMAX_GDD
table_daily_W$TMAX_GDD_after_2 <- table_daily_W$TMAX_GDD
}
# The maximum temperature can be capped for GDD calculation.
if (capped_max_temperature) {
if (crop_model %in% c("barley_hawn")) {
table_daily_W$TMAX_GDD_before_2[which(table_daily_W$TMAX_GDD_before_2 > max_temperature1)] <-
max_temperature1
table_daily_W$TMAX_GDD_after_2[which(table_daily_W$TMAX_GDD_after_2 > max_temperature2)] <-
max_temperature2
} else{
table_daily_W$TMAX_GDD[which(table_daily_W$TMAX_GDD > max_temperature)] <-
max_temperature
table_daily_W$TMIN_GDD[which(table_daily_W$TMIN_GDD > max_temperature)] <-
max_temperature
}
}
if (crop_model %notin% c("barley_hawn")) {
table_daily_W$TMEAN_GDD <-
(table_daily_W$TMAX_GDD + table_daily_W$TMIN_GDD) / 2
table_daily_W$GDD = table_daily_W$TMEAN_GDD - base_temperature
} else{
table_daily_W$TMEAN_GDD_before_2 <-
(table_daily_W$TMAX_GDD_before_2 + table_daily_W$TMIN_GDD) / 2
table_daily_W$GDD_before_2 = table_daily_W$TMEAN_GDD_before_2 - base_temperature
table_daily_W$TMEAN_GDD_after_2 <-
(table_daily_W$TMAX_GDD_after_2 + table_daily_W$TMIN_GDD) / 2
table_daily_W$GDD_after_2 = table_daily_W$TMEAN_GDD_after_2 - base_temperature
change_stage <-
as.numeric(table_gdd[which(table_gdd$Stage == stage_change_max_temp), "GDD"])
table_daily_W$cumGDD_before_2 <-
cumsum(table_daily_W$GDD_before_2)
table_daily_W$GDD <- NA
table_daily_W$GDD[which(table_daily_W$cumGDD_before_2 < change_stage)] <-
table_daily_W$GDD_before_2[which(table_daily_W$cumGDD_before_2 < change_stage)]
table_daily_W$GDD[which(table_daily_W$cumGDD_before_2 > change_stage)] <-
table_daily_W$GDD_after_2[which(table_daily_W$cumGDD_before_2 > change_stage)]
}
if (method_GDD_calculation == "method_a") {
table_daily_W$GDD[table_daily_W$GDD < 0] <- 0
}
# Calculation day length
if ("SG_DAY_HOUR_AVG" %in% names(table_daily_W)) {
table_daily_W$day_length <- table_daily_W$SG_DAY_HOUR_AVG
}
else{
table_daily_W$day_length <-
daylength(lat = table_daily_W$latitude, day_of_year = table_daily_W$DOY)
}
table_daily_W$PhotothermalTime <-
table_daily_W$day_length * table_daily_W$GDD
table_daily_W$cumGDD <- cumsum(table_daily_W$GDD)
## Define days for which a new stage is reached in terms of GDD
new_stage_reached <-
unlist(lapply(
table_gdd$GDD,
FUN = function(x) {
min(which(table_daily_W$cumGDD > x))
}
))
if (Inf %in% new_stage_reached) {
print(paste0(
"GDDs missing for the environment",
unique(table_daily_W$IDenv)
))
new_stage_reached <-
new_stage_reached[-which(new_stage_reached == Inf)]
new_stage_reached <- c(new_stage_reached, nrow(table_daily_W))
}
new_stage_reached <- c(0, new_stage_reached, nrow(table_daily_W))
table_daily_W$interval = cut(
seq_len(nrow(table_daily_W)),
breaks = new_stage_reached,
include.lowest = TRUE,
right = FALSE
)
intervals_growth <- c(0, table_gdd$Stage, "Harvest")
levels(table_daily_W$interval) <-
paste(intervals_growth[1:(length(intervals_growth) - 1)], intervals_growth[2:(length(intervals_growth))], sep = "-")
if ("T2M_MIN" %in% names(table_daily_W)) {
mean_TMIN <-
unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x)
mean(x$T2M_MIN)
))
freq_TMIN_inf_minus5 = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x) {
length(which(x$T2M_MIN < (-5))) / length(x$T2M_MIN)
}
))
}
if ("T2M_MAX" %in% names(table_daily_W)) {
mean_TMAX = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x)
mean(x$T2M_MAX)
))
freq_TMAX_sup30 = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x) {
length(which(x$T2M_MAX > 30)) / length(x$T2M_MAX)
}
))
freq_TMAX_sup35 = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x) {
length(which(x$T2M_MAX > 35)) / length(x$T2M_MAX)
}
))
freq_TMAX_sup40 = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x) {
length(which(x$T2M_MAX > 40)) / length(x$T2M_MAX)
}
))
cumsum30_TMAX = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x) {
sum(x[which(x$T2M_MAX > 30), "T2M_MAX"])
}
))
}
if ("T2M" %in% names(table_daily_W)) {
mean_TMEAN = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x)
mean(x$T2M)
))
}
if ("PhotothermalTime" %in% names(table_daily_W)) {
sum_PTT = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x)
sum(x$PhotothermalTime, na.rm = T)
))
}
if ("et0" %in% colnames(table_daily_W)) {
sum_et0 = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x)
sum(x$et0, na.rm = T)
))
}
if ("PRECTOTCORR" %in% names(table_daily_W)) {
sum_P = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x)
sum(x$PRECTOTCORR, na.rm = T)
))
freq_P_sup10 = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x) {
length(which(x$PRECTOTCORR > 10)) / length(x$PRECTOTCORR)
}
))
}
if ("daily_solar_radiation" %in% names(table_daily_W)) {
sum_solar_radiation = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x)
sum(x$daily_solar_radiation, na.rm = T)
))
}
if ("vapr_deficit" %in% names(table_daily_W)) {
mean_vapr_deficit = unlist(lapply(
split(table_daily_W, f = table_daily_W$interval),
FUN = function(x)
mean(x$vapr_deficit, na.rm = T)
))
}
toMatch <- c("mean|freq_|sum_|cumsum")
matches <- ls(pattern = toMatch)
table_EC <-
as.data.frame(`row.names<-`(do.call(cbind, mget(matches)), NULL))
row.names(table_EC) <- 1:nrow(table_EC)
# Format for final EC table per environment
# Each cell represents the value of the EC for this day-window, e.g.
# represents an EC on its own. Therefore, each cell should represent one
# column.
table_EC_long <- as.data.frame(t(unlist(table_EC)))
table_EC_long$IDenv <- unique(table_daily_W$IDenv)
table_EC_long$year <- unique(table_daily_W$year)
table_EC_long$location <- unique(table_daily_W$location)
return(table_EC_long)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.