View source: R/perform.seurat.cluster.R
perform.graph.cluster | R Documentation |
Performs graph-based clustering on previously generated neighbouhood graphs.
perform.graph.cluster( object, assay, neighbours, algorithm = 1, cluster.df.name.suffix = "", res = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5), verbose = FALSE, seed = 1234, ... )
object |
IBRAP S4 class object |
assay |
Character. String containing indicating which assay to use |
neighbours |
Character. String indicating which neighbourhood graphs should be used. |
algorithm |
Numerical. Algorithm for modularity optimization (1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm; 4 = Leiden algorithm). Leiden requires the leidenalg python. Default = 1 Default = NULL |
res |
Numerical vector. Which resolution to run the clusterign algorithm at, a smaller and larger value identified less and more clusters, respectively. Default = c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5) |
verbose |
Logical. Should system information be printed. Default = FALSE |
seed |
Numeric. What should the seed be set as. Default = 1234 |
... |
arguments to be passed to Seurat::FindClusters |
cluster.df.name |
Character. What to call the df contained in clusters. Default = 'seurat |
Cluster assignments using the list of resolutions provided contained within cluster_assignments under cluster.df.name
object <- perform.nn.v1(object = object, assay = c('SCT', 'SCRAN', 'SCANPY'), reduction = c('pca_harmony','scanorama'), dims = list(0,0), generate.diffmap = T) object <- perform.nn.v1(object = object, assay = c('SCT', 'SCRAN', 'SCANPY'), reduction = c('pca_bbknn_bbknn:diffmap','pca_harmony_nn.v1:diffmap', 'scanorama_nn.v1:diffmap'), dims = list(0,0,0)) object <- perform.nn.v2(object = object, assay = c('SCT', 'SCRAN', 'SCANPY'), reduction = c('pca_harmony','scanorama','pca_bbknn_bbknn:diffmap', 'pca_harmony_nn.v1:diffmap', 'scanorama_nn.v1:diffmap'), dims = list(0,0,0,0,0)) object <- perform.graph.cluster(object = object, assay = c('SCT', 'SCRAN', 'SCANPY'), neighbours = c("pca_bbknn_bbknn", "pca_harmony_nn.v1", "scanorama_nn.v1", "pca_bbknn_bbknn:diffmap_nn.v1", "pca_harmony_nn.v1:diffmap_nn.v1", "scanorama_nn.v1:diffmap_nn.v1", "pca_harmony_nn.v2", "scanorama_nn.v2", "pca_bbknn_bbknn:diffmap_nn.v2", "pca_harmony_nn.v1:diffmap_nn.v2", "scanorama_nn.v1:diffmap_nn.v2" ), algorithm = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.