rm(list=ls())
#setwd("~/Tesi/Code/modified_gjam/Gjam/")
library(repmis)
library(gjam)
library(MASS)
library(truncnorm)
library(coda)
library(RcppArmadillo)
library(arm)
library(Rcpp)
Rcpp::sourceCpp('src/cppFns.cpp')
source("R/gjamHfunctions_mod.R")
source("R/simple_gjam_1.R")
source("R/simple_gjam_2.R")
source("R/simple_gjam_3.R")
source("R/simple_gjam_4.R")
d <- "https://github.com/jimclarkatduke/gjam/blob/master/forestTraits.RData?raw=True"
source_data(d)
xdata <- forestTraits$xdata[,c(1,2,8)]
set.seed(123)
train_ind <- sample(seq_len(nrow(data)), size = smp_size)
#train <- data[train_ind, ]
#test <- data[-train_ind, ]
## dim(train) / 3712 131
## dim(test) / 1591 131
formula <- as.formula( ~ temp*deficit + I(temp^2) + I(deficit^2) )
y <- gjamReZero(forestTraits$treesDeZero) # extract y
treeYdata <- gjamTrimY(y,10)$y # at least 10 plots
rl <- list(r = 8, N = 20)
rl1 <- list(r = 8, N = 20,rate=10,shape=10)
rl2 <- list(r = 8, N = 20,rate=10,shape=10,V=1) #here to modify N
N_eps<-floor(.compute_tau_mean(0.3,2,0.1) + 2*.compute_tau_var(0.3,2,0.1))
rl3 <- list(r = 8, N = N_eps, sigma_py=0.3, alpha=2)
N_eps<-floor(.compute_tau_mean(0.5,10,0.1) + 2*.compute_tau_var(0.5,10,0.1))
rl4 <- list(r = 8, N = N_eps,rate=10,shape=10,V1=1,ro.disc=0.5) #here to modify N
ml4 <- list(ng = 1000, burnin = 500, typeNames = 'DA', reductList = rl4) #change ml
ml3 <- list(ng = 1000, burnin = 500, typeNames = 'DA', reductList = rl3) #change ml
ml2 <- list(ng = 1000, burnin = 500, typeNames = 'DA', reductList = rl2) #change ml
ml1 <- list(ng = 1000, burnin = 500, typeNames = 'DA', reductList = rl1) #change ml
ml <- list(ng = 1000, burnin = 500, typeNames = 'DA', reductList = rl) #change ml
form <- as.formula( ~ temp*deficit + I(temp^2) + I(deficit^2) )
fit<-gjam(form, xdata = xdata, ydata = treeYdata, modelList = ml)
fit1<-.gjam_1(form, xdata = xdata, ydata = treeYdata, modelList = ml1)
fit2<-.gjam_2(form, xdata = xdata, ydata = treeYdata, modelList = ml2)
fit3 <- .gjam_3(form,xdata,treeYdata,ml3)
fit4<-.gjam_4(form, xdata = xdata, ydata = treeYdata, modelList = ml4)
fit$fit$rmspeAll
fit4$fit$rmspeAll
alpha<-fit$chains$alpha.PY_g[seq(from=200,to=length(fit$chains$alpha.PY_g),by=20)]
alpha<-mcmc(alpha)
plot(alpha)
acfplot(alpha)
cumuplot(alpha)
discount<-mcmc(fit$chains$discount.PY_g)
plot(discount)
acfplot(discount)
cumuplot(discount)
rl0 <- list(r = 8, N = 20,alpha.DP=) #here to modify N
rl1 <- list(r = 8, N = 20,rate=10,shape=10,V=0.01) #here to modify N
rl2 <- list(r = 8, N = 20,rate=10,shape=10,V=0.1) #here to modify N
rl3 <- list(r = 8, N = 20,rate=10,shape=10,V=1) #here to modify N
rl4 <- list(r = 8, N = 20,rate=10,shape=10,V=10) #here to modify N
rl5 <- list(r = 8, N = 20,rate=10,shape=10,V=100) #here to modify N
ml1 <- list(ng = 2000, burnin = 500, typeNames = 'DA', reductList = rl0) #change ml
ml1 <- list(ng = 2000, burnin = 500, typeNames = 'DA', reductList = rl1) #change ml
ml2 <- list(ng = 2000, burnin = 500, typeNames = 'DA', reductList = rl2) #change ml
ml3 <- list(ng = 2000, burnin = 500, typeNames = 'DA', reductList = rl3) #change ml
ml4 <- list(ng = 2000, burnin = 500, typeNames = 'DA', reductList = rl4) #change ml
ml5 <- list(ng = 2000, burnin = 500, typeNames = 'DA', reductList = rl5) #change ml
fit0<-.gjam_2(form, xdata = xdata, ydata = treeYdata, modelList = ml0)
fit1<-.gjam_2(form, xdata = xdata, ydata = treeYdata, modelList = ml1)
fit2<-.gjam_2(form, xdata = xdata, ydata = treeYdata, modelList = ml2)
fit3<-.gjam_2(form, xdata = xdata, ydata = treeYdata, modelList = ml3)
fit4<-.gjam_2(form, xdata = xdata, ydata = treeYdata, modelList = ml4)
fit5<-.gjam_2(form, xdata = xdata, ydata = treeYdata, modelList = ml5)
alpha1<-fit1$chains$alpha.DP_g[seq(from=200,to=length(fit1$chains$alpha.DP_g),by=20)]
alpha1<-mcmc(alpha1)
plot(alpha1)
alpha2<-fit2$chains$alpha.DP_g[seq(from=200,to=length(fit2$chains$alpha.DP_g),by=20)]
alpha2<-mcmc(alpha2)
plot(alpha2)
alpha3<-fit3$chains$alpha.DP_g[seq(from=200,to=length(fit3$chains$alpha.DP_g),by=20)]
alpha3<-mcmc(alpha3)
plot(alpha3)
alpha4<-fit4$chains$alpha.DP_g[seq(from=200,to=length(fit4$chains$alpha.DP_g),by=20)]
alpha4<-mcmc(alpha4)
plot(alpha4)
alpha5<-fit5$chains$alpha.DP_g[seq(from=200,to=length(fit5$chains$alpha.DP_g),by=20)]
alpha5<-mcmc(alpha5)
plot(alpha5)
trace<-apply(fit$chains$kgibbs,1,function(x) length(unique(x)))
df<-as.data.frame(trace)
df$iter<-1:1000
#plot(apply(fit$chains$kgibbs,1,function(x) length(unique(x))))
p<-ggplot(df, aes(y=trace, x=iter)) + geom_point() +
labs(title=paste0("Trace plot for the number of groups"))+
theme_bw() + theme(axis.text.x = element_text(angle = 0, hjust = 1,size = 10), strip.text = element_text(size = 15),legend.position = "top", plot.title = element_text(hjust = 0.5))+
geom_hline(yintercept = 19,color = "red")
p
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.