#'
#' @title Tests for correlation between paired samples in the server-side
#' @description This is similar to the R stats function \code{cor.test}.
#' @details Runs a two-sided correlation test between paired samples, using one of
#' Pearson's product moment correlation coefficient, Kendall's tau or Spearman's rho.
#' Server function called: \code{corTestDS}
#' @param x a character string providing the name of a numerical vector.
#' @param y a character string providing the name of a numerical vector.
#' @param method a character string indicating which correlation coefficient is to be
#' used for the test. One of "pearson", "kendall", or "spearman", can be abbreviated.
#' Default is set to "pearson".
#' @param exact a logical indicating whether an exact p-value should be computed. Used for
#' Kendall's tau and Spearman's rho. See ‘Details’ of R stats function \code{cor.test} for
#' the meaning of NULL (the default).
#' @param conf.level confidence level for the returned confidence interval. Currently
#' only used for the Pearson product moment correlation coefficient if there are at least
#' 4 complete pairs of observations. Default is set to 0.95.
#' @param type a character string that represents the type of analysis to carry out.
#' This must be set to \code{'split'} or \code{'combine'}. Default is set to \code{'split'}. If
#' \code{type} is set to "combine" then an approximated pooled correlation is estimated based on
#' Fisher's z transformation.
#' @param datasources a list of \code{\link{DSConnection-class}}
#' objects obtained after login. If the \code{datasources} argument is not specified
#' the default set of connections will be used: see \code{\link{datashield.connections_default}}.
#' @return \code{ds.corTest} returns to the client-side the results of the correlation test.
#' @author DataSHIELD Development Team
#' @export
#' @examples
#' \dontrun{
#'
#' ## Version 6, for version 5 see the Wiki
#'
#' # connecting to the Opal servers
#'
#' require('DSI')
#' require('DSOpal')
#' require('dsBaseClient')
#'
#' builder <- DSI::newDSLoginBuilder()
#' builder$append(server = "study1",
#' url = "http://192.168.56.100:8080/",
#' user = "administrator", password = "datashield_test&",
#' table = "CNSIM.CNSIM1", driver = "OpalDriver")
#' builder$append(server = "study2",
#' url = "http://192.168.56.100:8080/",
#' user = "administrator", password = "datashield_test&",
#' table = "CNSIM.CNSIM2", driver = "OpalDriver")
#' builder$append(server = "study3",
#' url = "http://192.168.56.100:8080/",
#' user = "administrator", password = "datashield_test&",
#' table = "CNSIM.CNSIM3", driver = "OpalDriver")
#' logindata <- builder$build()
#'
#' connections <- DSI::datashield.login(logins = logindata, assign = TRUE, symbol = "D")
#'
#' # test for correlation
#' ds.corTest(x = "D$LAB_TSC",
#' y = "D$LAB_HDL",
#' datasources = connections[1]) #Only first server is used ("study1")
#'
#' # Clear the Datashield R sessions and logout
#' datashield.logout(connections)
#'
#' }
#'
ds.corTest <- function(x=NULL, y=NULL, method="pearson", exact=NULL, conf.level=0.95, type='split', datasources=NULL){
# look for DS connections
if(is.null(datasources)){
datasources <- datashield.connections_find()
}
# ensure datasources is a list of DSConnection-class
if(!(is.list(datasources) && all(unlist(lapply(datasources, function(d) {methods::is(d,"DSConnection")}))))){
stop("The 'datasources' were expected to be a list of DSConnection-class objects", call.=FALSE)
}
if(is.null(x)){
stop("x=NULL. Please provide the names of the 1st numeric vector!", call.=FALSE)
}
if(is.null(y)){
stop("y=NULL. Please provide the names of the 2nd numeric vector!", call.=FALSE)
}
if(!(method %in% c("pearson", "kendall", "spearman"))){
stop('Function argument "method" has to be either "pearson", "kendall" or "spearman"', call.=FALSE)
}
# check if the input objects are defined in all the studies
isDefined(datasources, x)
isDefined(datasources, y)
# call the internal function that checks the input objects are of the same class in all studies.
typ <- checkClass(datasources, x)
typ <- checkClass(datasources, y)
# call the server side function
cally <- call("corTestDS", x, y, method, exact, conf.level)
out <- DSI::datashield.aggregate(datasources, cally)
if(type=="split"){
return(out)
}else{
if(type=="combine"){
ni <- c()
Zi <- c()
varZi <- c()
for(i in 1:length(datasources)){
ni[i] <- out[[i]][[1]] # sample size
ri <- out[[i]][[2]]$estimate # the estimated measure of association
Zi[i] <- 0.5*log((1+ri)/(1-ri)) # Fishers Z transformation
varZi[i] <- 1/(ni[i]-3) # variance of the correlation
}
# pooled correlation and variance
Zpooled <- 0
varZpooled <- 0
for(i in 1:length(datasources)){
Zpooled <- Zpooled + (ni[i]-3)*Zi[i]
varZpooled <- varZpooled + (ni[i]-3)*varZi[i]
}
Zpooled <- Zpooled/(sum(ni)-3*length(datasources))
varZpooled <- varZpooled/(sum(ni)-3*length(datasources))
pval <- 2*(1-stats::pnorm(Zpooled/sqrt(varZpooled)))
corr <- tanh(Zpooled)
if(method=="pearson"){
zlcl = Zpooled - stats::qnorm(1-(1-conf.level)/2)*sqrt(varZpooled)
zucl = Zpooled + stats::qnorm(1-(1-conf.level)/2)*sqrt(varZpooled)
lcl= tanh(zlcl) # lower confidence level
ucl= tanh(zucl) # upper confidence level
out <- list(corr, c(lcl, ucl), pval)
names(out) <- c(paste0(method, " correlation estimate"),
paste0(conf.level, " percent confidence interval"),
"p-value")
return(out)
}else{
out <- list(corr, pval)
names(out) <- c(paste0(method, " correlation estimate"),
"p-value")
return(out)
}
}else{
stop('Function argument "type" has to be either "combine" or "split"', call.=FALSE)
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.