R/ds.heatmapPlot.R

Defines functions ds.heatmapPlot

Documented in ds.heatmapPlot

#'
#' @title Generates a Heat Map plot
#' @description Generates a heat map plot of the pooled data or one plot for each dataset.
#' @details The \code{ds.heatmapPlot} function first generates a density grid 
#' and uses it to plot the graph.
#' Cells of the grid density matrix that hold a count of less than the filter set by
#' DataSHIELD (usually 5) are considered invalid and turned into 0 to avoid potential
#' disclosure. A message is printed to inform the user about the number of invalid cells.
#' The ranges returned by each study and used in the process of getting the grid density matrix
#' are not the exact minimum and maximum values but rather close approximates of the real
#' minimum and maximum value. This was done to reduce the risk of potential disclosure.
#' 
#' In the argument \code{type} can be specified two types of graphics to display:
#'  \itemize{
#'    \item{\code{'combine'}}{: a combined heat map plot is displayed} 
#'    \item{\code{'split'}}{: each heat map is plotted separately}
#'     }
#'
#' In the argument \code{show} can be specified two options:
#'  \itemize{
#'    \item{\code{'all'}}{: the ranges of the variables are used as plot limits} 
#'    \item{\code{'zoomed'}}{: the plot is zoomed to the region where the actual data are}
#'     }
#' 
#' In the argument \code{method} can be specified 3 different heat map to be created:
#'  \itemize{
#'    \item{\code{'smallCellsRule'}}{: the heat map of the actual variables is
#'     created but grids with low counts are replaced with grids with zero counts} 
#'    \item{\code{'deterministic'}}{: the heat map of the scaled centroids of each 
#'          \code{k} nearest neighbours of the
#'         original variables are created, where the value of \code{k} is set by the user} 
#'    \item{\code{'probabilistic'}}{:  the heat map of \code{'noisy'} variables is generated. 
#'           The added noise follows a normal distribution with 
#'           zero mean and variance equal to a percentage of
#'           the initial variance of each input variable. 
#'           This percentage is specified by the user in the
#'           argument \code{noise}} 
#'  
#'     }
#' 
#' In the \code{k} argument the user can choose any value for 
#' \code{k} equal to or greater than the pre-specified threshold
#' used as a disclosure control for this method and lower than the number of observations
#' minus the value of this threshold. By default the value of \code{k} is set to be equal to 3
#' (we suggest k to be equal to, or bigger than, 3). Note that the function fails if the user
#' uses the default value but the study has set a bigger threshold. 
#' The value of \code{k} is used only
#' if the argument \code{method} is set to \code{'deterministic'}. 
#' Any value of \code{k} is ignored if the
#' argument \code{method} is set to \code{'probabilistic'} or \code{'smallCellsRule'}.
#'
#' 
#' The value of \code{noise} is used only if the argument 
#' \code{method} is set to \code{'probabilistic'}.
#' Any value of \code{noise} is ignored if the argument 
#' \code{method} is set to \code{'deterministic'} or \code{'smallCellsRule'}. 
#' The user can choose any value for \code{noise} equal 
#' to or greater than the pre-specified threshold \code{'nfilter.noise'}.
#' 
#' Server function called: \code{heatmapPlotDS}
#' @param x a character string specifying the name of a numerical vector.
#' @param y a character string specifying the name of a numerical vector.
#' @param type a character string that represents the type of graph to display.
#' \code{type} argument can be set as \code{'combine'} or \code{'split'}. 
#' Default \code{'combine'}.
#' For more information see \strong{Details}.
#' @param show a character string that represents where the plot should be focused. 
#' \code{show} argument can be set as \code{'all'} or \code{'zoomed'}. 
#' Default \code{'all'}. 
#' For more information see \strong{Details}.
#' @param numints the number of intervals for a density grid object. 
#' Default \code{numints} value is \code{20}. 
#' @param method a character string that defines which heat map will be created. 
#' The \code{method} argument can be set as \code{'smallCellsRule'}, 
#' \code{'deterministic'} or \code{'probabilistic'}. 
#' Default \code{'smallCellsRule'}. 
#' For more information see \strong{Details}.
#' @param k the number of the nearest neighbours for which their centroid is calculated. 
#' Default \code{k} value is \code{3}. 
#' For more information see \strong{Details}.
#' @param noise the percentage of the initial variance that is used as the variance of the embedded
#' noise if the argument \code{method} is set to \code{'probabilistic'}. 
#' Default \code{noise} value is  \code{0.25}.
#' For more information see \strong{Details}.
#' @param datasources a list of \code{\link{DSConnection-class}} objects obtained after login. 
#' If the \code{datasources} argument is not specified
#' the default set of connections will be used: see \code{\link{datashield.connections_default}}.
#' @return \code{ds.heatmapPlot} returns to the client-side a heat map plot and a message specifying 
#' the number of invalid cells in each study. 
#' @author DataSHIELD Development Team
#' @export
#' @examples
#' \dontrun{
#'
#' ## Version 6, for version 5 see the Wiki
#'   # Connecting to the Opal servers
#' 
#'   require('DSI')
#'   require('DSOpal')
#'   require('dsBaseClient')
#' 
#'   builder <- DSI::newDSLoginBuilder()
#'   builder$append(server = "study1", 
#'                  url = "http://192.168.56.100:8080/", 
#'                  user = "administrator", password = "datashield_test&", 
#'                  table = "CNSIM.CNSIM1", driver = "OpalDriver")
#'   builder$append(server = "study2", 
#'                  url = "http://192.168.56.100:8080/", 
#'                  user = "administrator", password = "datashield_test&", 
#'                  table = "CNSIM.CNSIM2", driver = "OpalDriver")
#'   builder$append(server = "study3",
#'                  url = "http://192.168.56.100:8080/", 
#'                  user = "administrator", password = "datashield_test&", 
#'                  table = "CNSIM.CNSIM3", driver = "OpalDriver")
#'   logindata <- builder$build()
#'   
#'   # Log onto the remote Opal training servers
#'   connections <- DSI::datashield.login(logins = logindata, assign = TRUE, symbol = "D") 
#'   
#'   # Compute the heat map plot 
#'   # Example 1: Plot a combined (default) heat map plot of the variables 'LAB_TSC'
#'   # and 'LAB_HDL' using the method 'smallCellsRule' (default)
#'   ds.heatmapPlot(x = 'D$LAB_TSC',
#'                  y = 'D$LAB_HDL',
#'                  datasources = connections) #all servers are used
#'                  
#'   # Example 2: Plot a split heat map  plot of the variables 'LAB_TSC'
#'   # and 'LAB_HDL' using the method 'smallCellsRule' (default)
#'   ds.heatmapPlot(x = 'D$LAB_TSC', 
#'                  y = 'D$LAB_HDL',
#'                  method = 'smallCellsRule', 
#'                  type = 'split',
#'                  datasources = connections[1]) #only the first server is used (study1)
#'                  
#'   # Example 3: Plot a combined heat map plot using the method 'deterministic' centroids of each 
#'   k = 7 nearest neighbours for numints = 40
#'   ds.heatmapPlot(x = 'D$LAB_TSC',
#'                  y = 'D$LAB_HDL', 
#'                  numints = 40, 
#'                  method = 'deterministic',
#'                  k = 7,
#'                  type = 'split',
#'                  datasources = connections[2]) #only the second server is used (study2)
#'
#' 
#'   # clear the Datashield R sessions and logout
#'   datashield.logout(connections)
#'
#' }
#'
ds.heatmapPlot <- function(x=NULL, y=NULL, type="combine", show="all", numints=20, 
                           method="smallCellsRule", k=3, noise=0.25, datasources=NULL){

  # look for DS connections
  if(is.null(datasources)){
    datasources <- datashield.connections_find()
  }

  # ensure datasources is a list of DSConnection-class
  if(!(is.list(datasources) && all(unlist(lapply(datasources, function(d) {methods::is(d,"DSConnection")}))))){
    stop("The 'datasources' were expected to be a list of DSConnection-class objects", call.=FALSE)
  }

  if(is.null(x)){
    stop("x=NULL. Please provide the names of the 1st numeric vector!", call.=FALSE)
  }

  if(is.null(y)){
    stop("y=NULL. Please provide the names of the 2nd numeric vector!", call.=FALSE)
  }

  # check if the input objects are defined in all the studies
  isDefined(datasources, x)
  isDefined(datasources, y)

  # call the internal function that checks the input object(s) is(are) of the same class in all studies.
  typ.x <- checkClass(datasources, x)
  typ.y <- checkClass(datasources, y)

  # the input objects must be numeric or integer vectors
  if(!('integer' %in% typ.x) & !('numeric' %in% typ.x)){
    message(paste0(x, " is of type ", typ.x, "!"))
    stop("The input objects must be integer or numeric vectors.", call.=FALSE)
  }
  if(!('integer' %in% typ.y) & !('numeric' %in% typ.y)){
    message(paste0(y, " is of type ", typ.y, "!"))
    stop("The input objects must be integer or numeric vectors.", call.=FALSE)
  }
  
  # the argument method must be either "smallCellsRule" or "deterministic" or "probabilistic"
  if(method != 'smallCellsRule' & method != 'deterministic' & method != 'probabilistic'){
    stop('Function argument "method" has to be either "smallCellsRule" or "deterministic" or "probabilistic"', call.=FALSE)
  }

  # prepare the axis labels
  xnames <- extract(x)
  x.lab <- xnames[[length(xnames)]]
  ynames <- extract(y)
  y.lab <- ynames[[length(ynames)]]

  # name of the studies to be used in the plots' titles
  stdnames <- names(datasources)

  # number of studies
  num.sources <- length(datasources)

  # if the method is set to 'deterministic' or 'probabilistic' call the server-side function
  # heatmapPlotDS that generates the anonymous data
  if (method=="deterministic"){

    method.indicator <- 1

    # call the server-side function that generates the x and y coordinates of the centroids
    cally <- paste0("heatmapPlotDS(", x, ",", y, ",", k, ",", noise, ",", method.indicator, ")")
    anonymous.data <- DSI::datashield.aggregate(datasources, cally)

    pooled.points.x <- c()
    pooled.points.y <- c()
    for (i in 1:num.sources){
      pooled.points.x[[i]] <- anonymous.data[[i]][[1]]
      pooled.points.y[[i]] <- anonymous.data[[i]][[2]]
    }
  }

  if (method=="probabilistic"){

    method.indicator <- 2

    # call the server-side function that generates the x and y coordinates of the anonymous.data
    cally <- paste0("heatmapPlotDS(", x, ",", y, ",", k, ",", noise, ",", method.indicator, ")")
    anonymous.data <- DSI::datashield.aggregate(datasources, cally)

    pooled.points.x <- c()
    pooled.points.y <- c()
    for (i in 1:num.sources){
      pooled.points.x[[i]] <- anonymous.data[[i]][[1]]
      pooled.points.y[[i]] <- anonymous.data[[i]][[2]]
    }
  }

  if(type=="combine"){

    if (method=="smallCellsRule"){

      # get the range from each study and produce the 'global' range
      cally <- paste("rangeDS(", x, ")")
      x.ranges <- DSI::datashield.aggregate(datasources, as.symbol(cally))

      cally <- paste("rangeDS(", y, ")")
      y.ranges <- DSI::datashield.aggregate(datasources, as.symbol(cally))

      x.minrs <- c()
      x.maxrs <- c()
      y.minrs <- c()
      y.maxrs <- c()
      for(i in 1:num.sources){
        x.minrs <- append(x.minrs, x.ranges[[i]][1])
        x.maxrs <- append(x.maxrs, x.ranges[[i]][2])
        y.minrs <- append(y.minrs, y.ranges[[i]][1])
        y.maxrs <- append(y.maxrs, y.ranges[[i]][2])
      }
      x.range.arg <- c(min(x.minrs), max(x.maxrs))
      y.range.arg <- c(min(y.minrs), max(y.maxrs))

      x.global.min <- x.range.arg[1]
      x.global.max <- x.range.arg[2]
      y.global.min <- y.range.arg[1]
      y.global.max <- y.range.arg[2]

      # generate the grid density object to plot
      cally <- paste0("densityGridDS(",x,",",y,",",limits=T,",",x.global.min,",",
                     x.global.max,",",y.global.min,",",y.global.max,",",numints,")")
      grid.density.obj <- DSI::datashield.aggregate(datasources, as.symbol(cally))

      numcol <- dim(grid.density.obj[[1]])[2]

      # print the number of invalid cells in each participating study
      for (i in 1:num.sources){
        message(stdnames[i],': ', names(dimnames(grid.density.obj[[i]])[2]))
      }

      Global.grid.density <- matrix(0, dim(grid.density.obj[[1]])[1], numcol-2)
      for (i in 1:num.sources){
        Global.grid.density <- Global.grid.density + grid.density.obj[[i]][,1:(numcol-2)]
      }

    }else{

      if (method=="deterministic" | method=="probabilistic"){

        xvect <- unlist(pooled.points.x)
        yvect <- unlist(pooled.points.y)

        # generate the grid density object to plot
        y.min <- min(yvect)
        x.min <- min(xvect)
        y.max <- max(yvect)
        x.max <- max(xvect)

        y.range <- y.max - y.min
        x.range <- x.max - x.min

        y.interval <- y.range / numints
        x.interval <- x.range / numints

        y.cuts <- seq(from = y.min, to = y.max, by = y.interval)
        y.mids <- seq(from = (y.min + y.interval/2), to = (y.max - y.interval/2), by = y.interval)
        y.cuts[numints+1] <- y.cuts[numints+1] * 1.001

        x.cuts <- seq(from = x.min, to = x.max, by = x.interval)
        x.mids <- seq(from = (x.min + x.interval/2), to = (x.max - x.interval/2), by = x.interval)
        x.cuts[numints+1] <- x.cuts[numints+1] * 1.001

        grid.density <- matrix(0, nrow=numints, ncol=numints)

        for(j in 1:numints){
          for(k in 1:numints){
            grid.density[j,k] <- sum(1*(yvect >= y.cuts[k] & yvect < y.cuts[k+1] & xvect >= x.cuts[j] & xvect < x.cuts[j+1]), na.rm=TRUE)
          }
        }
        grid.density.obj <- list()
        grid.density.obj[[1]] <- cbind(grid.density,x.mids,y.mids)

        numcol <- dim(grid.density.obj[[1]])[2]

        Global.grid.density <- grid.density

      }
    }

    # prepare arguments for the plot function
    graphics::par(mfrow=c(1,1))

    x <- grid.density.obj[[1]][,(numcol-1)]
    y <- grid.density.obj[[1]][,(numcol)]
    z <- Global.grid.density

    if (show=='all') {
      # plot a combined heatmap
      fields::image.plot(x, y, z, xlab=x.lab, ylab=y.lab, main="Heatmap Plot of the Pooled Data")
    }else if (show=='zoomed') {

      # find rows and columns on the edge of the grid density object which consist only of zeros and leave only
      # one such row/column on each side
      # rows on the top
      flag <- 0
      rows_top <- 1
      while (flag != 1) {            # find out where non-zero elements start
        if (all(Global.grid.density[rows_top,]==0)) {
          rows_top <- rows_top + 1
        }else{
          flag <- 1
        }
      }

      if (rows_top==1){               # the first row contains non-zero elements
        dummy_top <- rows_top
      }else{
        dummy_top <- rows_top - 1      # leave one row at the top with only zeros
      }

      # rows at the bottom
      flag <- 0
      rows_bot <- dim(Global.grid.density)[1]
      while (flag != 1) {             # find out where non-zero elements start
        if (all(Global.grid.density[rows_bot,]==0)) {
          rows_bot <- rows_bot - 1
        }else{
          flag <- 1
        }
      }

      if (rows_bot==dim(Global.grid.density)[1]) {  # the last row contains non-zero elements
        dummy_bot <- rows_bot
      }else{
        dummy_bot <- rows_bot+1  # leave one row at the bottom with only zeros
      }

      # columns on the left
      flag <- 0
      col_left <- 1
      while (flag != 1) {   # find out where non-zero elements start
        if (all(Global.grid.density[,col_left]==0)) {
          col_left <- col_left + 1
        }else{
          flag <- 1
        }
      }
      if (col_left==1) {           # the first column contains non-zero elements
        dummy_left <- col_left
      }else{
        dummy_left <- col_left - 1  # leave one column on the left with only zeros
      }

      # columns on the right
      flag <- 0
      col_right <- dim(Global.grid.density)[2]
      while (flag != 1) {   # find out where non-zero elements start
        if (all(Global.grid.density[,col_right]==0)) {
          col_right <- col_right - 1
        }else{
          flag <- 1
        }
      }

      if (col_right==1) {        # the first column contains non-zero elements
        dummy_right <- dim(Global.grid.density)[2]
      }else{
        dummy_right <- col_right + 1  # leave one column on the right with only zeros
      }

      z.zoomed <- Global.grid.density[dummy_top:dummy_bot, dummy_left:dummy_right]
      x.zoomed <- x[dummy_top:dummy_bot]
      y.zoomed <- y[dummy_left:dummy_right]

      # plot a combined heatmap
      fields::image.plot(x.zoomed, y.zoomed, z.zoomed, xlab=x.lab, ylab=y.lab, main="Heatmap Plot of the Pooled Data (zoomed)")

    }else{
       stop('Function argument "show" has to be either "all" or "zoomed"')
    }
  } else if (type=='split') {

   if (method=="smallCellsRule"){

     # generate the grid density object to plot
     num_intervals <- numints
     cally <- paste0("densityGridDS(",x, ",", y, ",", 'limits=FALSE', ",", 'x.min=NULL', ",",
                     'x.max=NULL', ",", 'y.min=NULL', ",", 'y.max=NULL', ",", numints=num_intervals, ")")
     grid.density.obj <- DSI::datashield.aggregate(datasources, as.symbol(cally))

     numcol <- dim(grid.density.obj[[1]])[2]
   }
   if (method=="deterministic" | method=="probabilistic"){

     grid.density.obj <- list()
     for (i in 1:num.sources){
       xvect <- unlist(anonymous.data[[i]][[1]])
       yvect <- unlist(anonymous.data[[i]][[2]])

       # generate the grid density object to plot
       y.min <- min(yvect)
       x.min <- min(xvect)
       y.max <- max(yvect)
       x.max <- max(xvect)

       y.range <- y.max-y.min
       x.range <- x.max-x.min

       y.interval <- y.range/numints
       x.interval <- x.range/numints

       y.cuts <- seq(from = y.min, to = y.max, by = y.interval)
       y.mids <- seq(from = (y.min + y.interval/2), to = (y.max - y.interval/2), by = y.interval)
       y.cuts[numints+1] <- y.cuts[numints+1] * 1.001

       x.cuts <- seq(from = x.min, to = x.max, by = x.interval)
       x.mids <- seq(from = (x.min + x.interval/2), to = (x.max - x.interval/2), by = x.interval)
       x.cuts[numints+1] <- x.cuts[numints+1] * 1.001

       grid.density <- matrix(0, nrow=numints, ncol=numints)

       for(j in 1:numints){
         for(k in 1:numints){
           grid.density[j,k] <- sum(1*(yvect >= y.cuts[k] & yvect < y.cuts[k+1] & xvect >= x.cuts[j] & xvect < x.cuts[j+1]), na.rm=TRUE)
         }
       }
       grid.density.obj[[i]] <- cbind(grid.density, x.mids, y.mids)

       numcol <- dim(grid.density.obj[[i]])[2]
     }
   }

     # print the number of invalid cells in each participating study
     for (i in 1:num.sources) {
       message(stdnames[i],': ', names(dimnames(grid.density.obj[[i]])[2]))
     }

     if(num.sources > 1){
       if((num.sources %% 2) == 0){ numr <- num.sources/2 }else{ numr <- (num.sources + 1)/2}
       numc <- 2
       graphics::par(mfrow=c(numr, numc))
       for(i in 1:num.sources){
         grid <- grid.density.obj[[i]][,1:(numcol-2)]
         x <- grid.density.obj[[i]][,(numcol-1)]
         y <- grid.density.obj[[i]][,(numcol)]
         z <- grid
         title <- paste("Heatmap Plot of ", stdnames[i], sep="")
         if (show=='all') {
           fields::image.plot(x, y, z, xlab = x.lab, ylab = y.lab, main = title)
         } else if (show=='zoomed') {

           # find rows and columns on the edge of the grid density object which consist only of zeros and leave only
           # one such row/column on each side
           # rows on the top
           flag = 0
           rows_top = 1
           while (flag != 1) {   # find out where non-zero elements start
             if (all(z[rows_top,]==0)){
               rows_top = rows_top+1
             }else{
               flag = 1
             }
           }

           if (rows_top==1){  # the first row contains non-zero elements
             dummy_top <- rows_top
           }else{
             dummy_top <- rows_top - 1  # leave one row at the top with only zeros
           }

           # rows at the bottom
           flag <- 0
           rows_bot <- dim(z)[1]
           while (flag !=1){   # find out where non-zero elements start
             if (all(z[rows_bot,]==0)) {
               rows_bot <- rows_bot - 1
             }else{
               flag <- 1
             }
           }

           if (rows_bot==dim(z)[1]){   # the last row contains non-zero elements
             dummy_bot <- rows_bot
           }else{
             dummy_bot <- rows_bot + 1   # leave one row at the bottom with only zeros
           }

           # columns on the left
           flag <- 0
           col_left <- 1
           while (flag != 1) {         # find out where non-zero elements start
             if (all(z[,col_left]==0)){
               col_left <- col_left + 1
             }else{
               flag <- 1
             }
           }

           if (col_left==1){            # the first column contains non-zero elements
             dummy_left <- col_left
           }else{
             dummy_left <- col_left - 1  # leave one column on the left with only zeros
           }

           # columns on the right
           flag <- 0
           col_right <- dim(z)[2]
           while (flag != 1) {   # find out where non-zero elements start
             if (all(z[,col_right]==0)){
               col_right <- col_right - 1
             }else{
               flag <- 1
             }
           }

           if (col_right==1){   # the first column contains non-zero elements
             dummy_right <- dim(z)[2]
           }else{
             dummy_right <- col_right + 1   # leave one column on the right with only zeros
           }

           z.zoomed <- z[dummy_top:dummy_bot, dummy_left:dummy_right]
           x.zoomed <- x[dummy_top:dummy_bot]
           y.zoomed <- y[dummy_left:dummy_right]

           title <- paste("Heatmap Plot of ", stdnames[i], " (zoomed)", sep="")
           fields::image.plot(x.zoomed, y.zoomed, z.zoomed, xlab = x.lab, ylab = y.lab, main = title)

         }else{
           stop('Function argument "show" has to be either "all" or "zoomed"')
         }
       }

     }else{
       graphics::par(mfrow=c(1,1))
       grid <- grid.density.obj[[1]][,1:(numcol-2)]
       x <- grid.density.obj[[1]][,(numcol-1)]
       y <- grid.density.obj[[1]][,(numcol)]
       z <- grid
       title <- paste("Heatmap Plot of ", stdnames[1], sep="")

       if(show=='all'){
         fields::image.plot(x, y, z, xlab = x.lab, ylab = y.lab, main = title)
       } else if (show=='zoomed') {

         # find rows and columns on the edge of the grid density object which consist only of zeros and leave only
         # one such row/column on each side
         # rows on the top
         flag <- 0
         rows_top <- 1
         while (flag != 1){   # find out where non-zero elements start
           if (all(z[rows_top,]==0)){
             rows_top <- rows_top + 1
           }else{
             flag <- 1
           }
         }

         if(rows_top==1){  # the first row contains non-zero elements
           dummy_top <- rows_top
         }else{
           dummy_top <- (rows_top - 1)  # leave one row at the top with only zeros
         }

         # rows at the bottom
         flag <- 0
         rows_bot <- dim(z)[1]
         while (flag != 1){        # find out where non-zero elements start
           if (all(z[rows_bot,]==0)){
             rows_bot <- (rows_bot - 1)
           }else{
             flag <- 1
           }
         }

         if (rows_bot==dim(z)[1]){  # the last row contains non-zero elements
           dummy_bot <- rows_bot
         }else{
           dummy_bot <- (rows_bot + 1)   # leave one row at the bottom with only zeros
         }

         # columns on the left
         flag <- 0
         col_left <- 1
         while (flag != 1){         # find out where non-zero elements start
           if (all(z[,col_left]==0)){
             col_left <- col_left + 1
           }else{
             flag <- 1
           }
         }

         if (col_left==1){          # the first column contains non-zero elements
           dummy_left <- col_left
         }else{
           dummy_left <- col_left - 1  # leave one column on the left with only zeros
         }

         # columns on the right
         flag <- 0
         col_right <- dim(z)[2]
         while (flag != 1){          # find out where non-zero elements start
           if (all(z[,col_right]==0)){
             col_right <- col_right - 1
           }else{
             flag <- 1
           }
         }

         if (col_right==1){           # the first column contains non-zero elements
           dummy_right <- dim(z)[2]
         }else{
           dummy_right <- col_right + 1  # leave one column on the right with only zeros
         }

         z.zoomed <- z[dummy_top:dummy_bot, dummy_left:dummy_right]
         x.zoomed <- x[dummy_top:dummy_bot]
         y.zoomed <- y[dummy_left:dummy_right]

         title <- paste("Heatmap Plot of ", stdnames[1], " (zoomed)", sep="")
         fields::image.plot(x.zoomed, y.zoomed, z.zoomed, xlab = x.lab, ylab = y.lab, main = "Heatmap Plot of the Pooled Data")

       }else{
         stop('Function argument "show" has to be either "all" or "zoomed"')
       }
     }

   }else{
     stop('Function argument "type" has to be either "combine" or "split"')
   }
}
datashield/dsBaseClient documentation built on May 16, 2023, 10:19 p.m.