#'
#' @title Generates a histogram plot
#' @description \code{ds.histogram} function plots a non-disclosive histogram in the client-side.
#' @details \code{ds.histogram} function allows the user to plot
#' distinct histograms (one for each study) or a combined histogram that merges
#' the single plots.
#'
#' In the argument \code{type} can be specified two types of graphics to display:
#' \itemize{
#' \item{\code{'combine'}}{: a histogram that merges the single plot is displayed.}
#' \item{\code{'split'}}{: each histogram is plotted separately.}
#' }
#'
#' In the argument \code{method} can be specified 3 different histograms to be created:
#' \itemize{
#' \item{\code{'smallCellsRule'}}{: the histogram of the actual variable is
#' created but bins with low counts are removed.}
#' \item{\code{'deterministic'}}{: the histogram of the scaled centroids of each
#' \code{k} nearest neighbours of the original variable
#' where the value of \code{k} is set by the user.}
#' \item{\code{'probabilistic'}}{: the histogram shows the original distribution disturbed
#' by the addition of random stochastic noise.
#' The added noise follows a normal distribution with zero mean and
#' variance equal to a percentage of the initial variance of the input variable.
#' This percentage is specified by the user in the argument \code{noise}.}
#'
#' }
#'
#'
#' In the \code{k} argument the user can choose any value for \code{k} equal
#' to or greater than the pre-specified threshold
#' used as a disclosure control for this method and lower than the number of observations
#' minus the value of this threshold. By default the value of \code{k} is set to be equal to 3
#' (we suggest k to be equal to, or bigger than, 3). Note that the function fails if the user
#' uses the default value but the study has set a bigger threshold.
#' The value of \code{k} is used only if the argument
#' \code{method} is set to \code{'deterministic'}.
#' Any value of k is ignored if the
#' argument \code{method} is set to \code{'probabilistic'} or \code{'smallCellsRule'}.
#'
#' In the \code{noise} argument the percentage of the initial variance
#' that is used as the variance of the embedded
#' noise if the argument \code{method} is set to \code{'probabilistic'}.
#' Any value of noise is ignored if the argument
#' \code{method} is set to \code{'deterministic'} or \code{'smallCellsRule'}.
#' The user can choose any value for noise equal to or greater
#' than the pre-specified threshold \code{'nfilter.noise'}.
#' By default the value of noise is set to be equal to 0.25.
#'
#' In the argument \code{vertical.axis} can be specified two types of histograms:
#' \itemize{
#' \item{\code{'Frequency'}}{: the histogram of the frequencies
#' is returned.}
#' \item{\code{'Density'}}{: the histogram of the densities
#' is returned.}
#' }
#'
#' Server function called: \code{histogramDS2}
#' @param x a character string specifying the name of a numerical vector.
#' @param type a character string that represents the type of graph to display.
#' The \code{type} argument can be set as \code{'combine'} or \code{'split'}.
#' Default \code{'split'}.
#' For more information see \strong{Details}.
#' @param num.breaks a numeric specifying the number of breaks of the histogram. Default value
#' is \code{10}.
#' @param method a character string that defines which histogram will be created.
#' The \code{method} argument can be set as \code{'smallCellsRule'},
#' \code{'deterministic'} or \code{'probabilistic'}.
#' Default \code{'smallCellsRule'}.
#' For more information see \strong{Details}.
#' @param k the number of the nearest neighbours for which their centroid is calculated.
#' Default \code{k} value is \code{3}.
#' For more information see \strong{Details}.
#' @param noise the percentage of the initial variance that is used as the variance of the embedded
#' noise if the argument \code{method} is set to \code{'probabilistic'}.
#' Default \code{noise} value is \code{0.25}.
#' For more information see \strong{Details}.
#' @param vertical.axis, a character string that defines what is shown in the vertical axis of the
#' plot. The \code{vertical.axis} argument can be set as \code{'Frequency'} or \code{'Density'}.
#' Default \code{'Frequency'}.
#' For more information see \strong{Details}.
#' @param datasources a list of \code{\link{DSConnection-class}} objects obtained after login.
#' If the \code{datasources} argument is not specified
#' the default set of connections will be used: see \code{\link{datashield.connections_default}}.
#' @return one or more histogram objects and plots depending on the argument \code{type}
#' @author DataSHIELD Development Team
#' @export
#' @examples
#' \dontrun{
#'
#' ## Version 6, for version 5 see the Wiki
#' # Connecting to the Opal servers
#'
#' require('DSI')
#' require('DSOpal')
#' require('dsBaseClient')
#'
#' builder <- DSI::newDSLoginBuilder()
#' builder$append(server = "study1",
#' url = "http://192.168.56.100:8080/",
#' user = "administrator", password = "datashield_test&",
#' table = "CNSIM.CNSIM1", driver = "OpalDriver")
#' builder$append(server = "study2",
#' url = "http://192.168.56.100:8080/",
#' user = "administrator", password = "datashield_test&",
#' table = "CNSIM.CNSIM2", driver = "OpalDriver")
#' builder$append(server = "study3",
#' url = "http://192.168.56.100:8080/",
#' user = "administrator", password = "datashield_test&",
#' table = "CNSIM.CNSIM3", driver = "OpalDriver")
#' logindata <- builder$build()
#'
#' # Log onto the remote Opal training servers
#' connections <- DSI::datashield.login(logins = logindata, assign = TRUE, symbol = "D")
#'
#' # Compute the histogram
#' # Example 1: generate a histogram for each study separately
#' ds.histogram(x = 'D$PM_BMI_CONTINUOUS',
#' type = "split",
#' datasources = connections) #all studies are used
#'
#' # Example 2: generate a combined histogram with the default small cells counts
#' suppression rule
#' ds.histogram(x = 'D$PM_BMI_CONTINUOUS',
#' method = 'smallCellsRule',
#' type = 'combine',
#' datasources = connections[1]) #only the first study is used (study1)
#'
#' # Example 3: if a variable is of type factor the function returns an error
#' ds.histogram(x = 'D$PM_BMI_CATEGORICAL',
#' datasources = connections)
#'
#' # Example 4: generate a combined histogram with the deterministic method for k=50
#' ds.histogram(x = 'D$PM_BMI_CONTINUOUS',
#' k = 50,
#' method = 'deterministic',
#' type = 'combine',
#' datasources = connections[2])#only the second study is used (study2)
#'
#'
#' # Example 5: create a histogram and the probability density on the plot
#' hist <- ds.histogram(x = 'D$PM_BMI_CONTINUOUS',
#' method = 'probabilistic', type='combine',
#' num.breaks = 30,
#' vertical.axis = 'Density',
#' datasources = connections)
#' lines(hist$mids, hist$density)
#'
#' # clear the Datashield R sessions and logout
#' datashield.logout(connections)
#' }
#'
#'
ds.histogram <- function(x=NULL, type="split", num.breaks=10, method="smallCellsRule", k=3, noise=0.25, vertical.axis="Frequency", datasources=NULL){
# look for DS connections
if(is.null(datasources)){
datasources <- datashield.connections_find()
}
# ensure datasources is a list of DSConnection-class
if(!(is.list(datasources) && all(unlist(lapply(datasources, function(d) {methods::is(d,"DSConnection")}))))){
stop("The 'datasources' were expected to be a list of DSConnection-class objects", call.=FALSE)
}
if(is.null(x)){
stop("Please provide the name of the input vector!", call.=FALSE)
}
# check if the input object is defined in all the studies
isDefined(datasources, x)
# call the internal function that checks the input object is of the same class in all studies.
typ <- checkClass(datasources, x)
# the input object must be a numeric or an integer vector
if(!('integer' %in% typ) & !('numeric' %in% typ)){
message(paste0(x, " is of type ", typ, "!"))
stop("The input object must be an integer or numeric vector.", call.=FALSE)
}
# the argument vertical.axis must be "Frequency" or "Density"
if(vertical.axis != 'Frequency' & vertical.axis != 'Density'){
stop('Function argument "vertical.axis" has to be either "Frequency" or "Density"', call.=FALSE)
}
# the argument method must be either "smallCellsRule" or "deterministic" or "probabilistic"
if(method != 'smallCellsRule' & method != 'deterministic' & method != 'probabilistic'){
stop('Function argument "method" has to be either "smallCellsRule" or "deterministic" or "probabilistic"', call.=FALSE)
}
# name of the studies to be used in the plots' titles
stdnames <- names(datasources)
# number of studies
num.sources <- length(datasources)
if(method=='smallCellsRule'){ method.indicator <- 1 }
if(method=='deterministic'){ method.indicator <- 2 }
if(method=='probabilistic'){ method.indicator <- 3 }
# call the server-side function that returns the range of the vector from each study
cally1 <- paste0("histogramDS1(", x, ",", method.indicator, ",", k, ",", noise, ")")
ranges <- unique(unlist(DSI::datashield.aggregate(datasources, as.symbol(cally1))))
# produce the 'global' range
range.arg <- c(min(ranges, na.rm=TRUE), max(ranges, na.rm=TRUE))
min <- range.arg[1]
max <- range.arg[2]
# get the axis label
xnames <- extract(x)
varname <- xnames$elements
# call the server-side function that generates the histogram object to plot
call <- paste0("histogramDS2(", x, ",", num.breaks, ",", min, ",", max, ",", method.indicator, ",", k, ",", noise, ")")
outputs <- DSI::datashield.aggregate(datasources, call)
hist.objs <- vector("list", length(datasources))
invalidcells <- vector("list", length(datasources))
for(i in 1:length(datasources)){
output <- outputs[[i]]
if(is.null(output)){
stop("Equidistant break points that span all the data points could not be find, in stdnames[i]!")
}
hist.objs[[i]] <- output$histobject
invalidcells[[i]] <- output$invalidcells
}
# if type is set to 'combine' then combine the histogram objects
# 'breaks' and 'mids' are the same for all studies
if(type=='combine'){
global.counts <- rep(0, length(hist.objs[[1]]$counts))
global.density <- rep(0, length(hist.objs[[1]]$density))
for(i in 1:length(datasources)){
global.counts <- global.counts + hist.objs[[i]]$counts
global.density <- global.density + hist.objs[[i]]$density
}
global.density <- global.density/3
global.intensities <- global.density
# generate the combined histogram object to plot
combined.histobject <- hist.objs[[1]]
combined.histobject$counts <- global.counts
combined.histobject$density <- global.density
combined.histobject$intensities <- combined.histobject$density
}
# plot the individual histograms on the same graph
# if the argument 'type'="combine" plot a combined histogram and if 'type'="split" plot single
# histograms for each study separately
if(type=="combine"){
graphics::par(mfrow=c(1,1))
if(vertical.axis=="Frequency"){
graphics::plot(combined.histobject, freq=TRUE, xlab=varname, main='Histogram of the pooled data')
}
if(vertical.axis=="Density"){
graphics::plot(combined.histobject, freq=FALSE, xlab=varname, main='Histogram of the pooled data')
}
return(combined.histobject)
}else{
if(type=="split"){
# set the graph area and plot
ll <- length(datasources)
if(ll > 1){
if((ll %% 2) == 0){ numr <- ll/2 }else{ numr <- (ll+1)/2}
numc <- 2
graphics::par(mfrow=c(numr,numc))
for(i in 1:ll){
warning(names(datasources)[i], ": ", invalidcells[[i]], " invalid cells", immediate.=TRUE, call.=FALSE)
if(vertical.axis=="Frequency"){
graphics::plot(hist.objs[[i]], freq=TRUE, xlab=varname, main=paste("Histogram of ", names(datasources)[i], sep=""))
}
if(vertical.axis=="Density"){
graphics::plot(hist.objs[[i]], freq=FALSE, xlab=varname, main=paste("Histogram of ", names(datasources)[i], sep=""))
}
}
return(hist.objs)
}else{
graphics::par(mfrow=c(1,1))
warning(names(datasources)[1], ": ", invalidcells[[1]], " invalid cells", immediate.=TRUE, call.=FALSE)
if(vertical.axis=="Frequency"){
graphics::plot(hist.objs[[1]], freq=TRUE, xlab=varname, main=paste("Histogram of ", names(datasources)[1], sep=""))
}
if(vertical.axis=="Density"){
graphics::plot(hist.objs[[1]], freq=FALSE, xlab=varname, main=paste("Histogram of ", names(datasources)[1], sep=""))
}
return(hist.objs[[1]])
}
}else{
stop('Function argument "type" has to be either "combine" or "split"')
}
}
}
# ds.histogram
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.