sampling_bias_bootstrap <- function(name, hv, n = 10, points_per_resample = 'sample_size', cores = 1, verbose = TRUE, mu = NULL, sigma = NULL, cols_to_bias = 1:ncol(hv@Data), weight_func = NULL) {
# Check if cluster registered to doparallel backend exists
exists_cluster = TRUE
if(cores > 1 & getDoParWorkers() == 1) {
# If no cluster is registered, create a new one based on use input
cl = makeCluster(cores)
clusterEvalQ(cl, {
library(hypervolume)
library(mvtnorm)
})
registerDoParallel(cl)
exists_cluster = FALSE
}
# Create folder to store bootstrapped hypervolumes
dir.create(file.path('./Objects', name))
if(verbose) {
pb = progress_bar$new(total = n)
}
# Apply weights to data before bootstrapping
foreach(i = 1:n, .combine = c) %dopar% {
if(is.null(weight_func)) {
if(length(mu) == 1) {
weights = dnorm(hv@Data[,cols_to_bias], mean = mu, sd = sqrt(sigma))
} else {
weights = dmvnorm(hv@Data[,cols_to_bias], mean = mu, sigma = diag(sigma))
}
} else {
weights = weight_func(hv@Data[,cols_to_bias])
}
if(points_per_resample == 'sample_size') {
points = apply(rmultinom(nrow(hv@Data), 1, weights) == 1, 2, which)
} else {
points = apply(rmultinom(points_per_resample, 1, weights) == 1, 2, which)
}
sample_dat = hv@Data[points,]
h = copy_param_hypervolume(hv, sample_dat, name = paste("resample", as.character(i)))
path = paste0(h@Name, '.rds')
saveRDS(h, file.path('./Objects', name, path))
if(verbose) {
pb$tick()
}
}
# If a cluster was created for this specific function call, close cluster and register sequential backend
if(!exists_cluster) {
stopCluster(cl)
registerDoSEQ()
}
return(file.path(getwd(), 'Objects', name))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.