#' @title Final ex-situ conservation score estimation (Ex-situ conservation indicators).
#' @name fcs_exsitu
#' @description Concatenates the SRSex, GRSex, and ERSex values in an unique file, Then calculates a final priority scores as
#' the average of the SRSex, GRSex, and ERSex values
#'
#' \deqn{FCSex = mean(SRSex,GRSex,ERSex)}
#'
#' @param species A name species compiled using '_' to call occurrences files from Workspace/parameter/occurrences folder
#' @param Workspace A forder where the pipeline will be executed
#' @param run_version The version of the analysis used (e.g 'v1')
#'
#' @return It returns a data frame file saved at gap_analysis folder with five fields:
#'
#' \tabular{lcc}{
#' ID \tab Species name \cr
#' SRS \tab Ex-situ sample representativeness score \cr
#' GRS \tab Ex-situ germplasm representativeness score \cr
#' ERS \tab Ex-situ environmental representativeness score \cr
#' FCS \tab Ex-situ final conservation score \cr
#' }
#'
#' @examples fcs_exsitu('Cucurbita_digitata',Workspace,'v1')
#'
#' Workspace <- 'E:/CIAT/workspace/Workspace_test/workspace'
#' run_version <- 'v1'
#' species_list <- c('Cucurbita_cordata',
#' 'Cucurbita_digitata',
#' 'Cucurbita_foetidissima',
#' 'Cucurbita_palmata')
#'
#' run_version <-'v1'
#
#' lapply(1:length(species_list),function(i){
#' species <- species_list[[i]]
#' x <- fcs_exsitu(species,Workspace,run_version)
#' print(paste0(species,' DONE!'))
#' })
#'
#'@references
#'
#'Ramírez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010).
#'A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans.
#'PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497
#'
#' Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., … Jarvis, A. (2019).
#' Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity
#' and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016
#'
#' @export
########################################## Start Functions ###############################################
# This function calculates the FCSex. It loads srs.csv, grs.csv, ers.csv and
# calculates FCS. It saves output in summary.csv
# @param (string) species: species ID
# @return (data.frame): This function returns a data frame with ID, SRS, GRS, ERS, FCS
# for a given species.
fcs_exsitu <- function(srsDF,grsDF,ersDF){
#importFrom("methods", "as")
#importFrom("stats", "complete.cases", "filter", "median")
#importFrom("utils", "data", "memory.limit", "read.csv", "write.csv")
# join the dataframes base on species
df1 <- dplyr::left_join(srsDF, grsDF, by ="species")
df2 <- dplyr::left_join(df1, ersDF, by = "species") %>%
dplyr::select("species","SRSex", "GRSex", "ERSex")
# calculate the mean value for each row to determine fcs per species
for(i in 1:nrow(df2)){
df2$FCSex[i] <- mean(c(df2$SRSex[i], df2$GRSex[i], df2$ERSex[i]))
}
return(df2)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.