context("layer_text_vectorization")
source("utils.R")
test_call_succeeds("layer_text_vectorization", {
if (tensorflow::tf_version() < "2.1")
skip("TextVectorization requires TF version >= 2.1")
input <- matrix(c("hello world", "hello world"), ncol = 1)
layer <- layer_text_vectorization()
layer %>% adapt(input)
output <- layer(input)
expect_s3_class(output, "tensorflow.tensor")
})
test_call_succeeds("layer_text_vectorization", {
if (tensorflow::tf_version() < "2.1")
skip("TextVectorization requires TF version >= 2.1")
x <- matrix(c("hello world", "hello world"), ncol = 1)
layer <- layer_text_vectorization(output_mode = "binary",
pad_to_max_tokens = FALSE)
layer %>% adapt(x)
output <- layer(x)
expect_s3_class(output, "tensorflow.tensor")
})
test_call_succeeds("can use layer_text_vectorization in a functional model", {
if (tensorflow::tf_version() < "2.1")
skip("TextVectorization requires TF version >= 2.1")
x <- matrix(c("hello world", "hello world"), ncol = 1)
layer <- layer_text_vectorization()
layer %>% adapt(x)
input <- layer_input(shape = 1, dtype = "string")
output <- layer(input)
model <- keras_model(input, output)
pred <- predict(model, x)
})
test_call_succeeds("can set and get the vocabulary of layer_text_vectorization", {
if (tensorflow::tf_version() < "2.1")
skip("TextVectorization requires TF version >= 2.1")
x <- matrix(c("hello world", "hello world"), ncol = 1)
layer <- layer_text_vectorization()
set_vocabulary(layer, vocab = c("hello", "world"))
output <- layer(x)
vocab <- get_vocabulary(layer)
expect_s3_class(output, "tensorflow.tensor")
expect_length(vocab, 2)
})
test_call_succeeds("can use layer_text_vectorization", {
if (tensorflow::tf_version() < "2.1")
skip("TextVectorization requires TF version >= 2.1")
x <- matrix(c("hello world", "hello world"), ncol = 1)
x_ds <- tfdatasets::tensor_slices_dataset(x)
layer <- layer_text_vectorization()
layer %>% adapt(x_ds)
expect_length(get_vocabulary(layer), 2)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.