#' Trains a simple convnet on the MNIST dataset.
#'
#' Gets to 99.25% test accuracy after 12 epochs
#' Note: There is still a large margin for parameter tuning
#'
#' 16 seconds per epoch on a GRID K520 GPU.
library(keras)
# Data Preparation -----------------------------------------------------
batch_size <- 128
num_classes <- 10
epochs <- 12
# Input image dimensions
img_rows <- 28
img_cols <- 28
# The data, shuffled and split between train and test sets
mnist <- dataset_mnist()
x_train <- mnist$train$x
y_train <- mnist$train$y
x_test <- mnist$test$x
y_test <- mnist$test$y
# Redefine dimension of train/test inputs
x_train <- array_reshape(x_train, c(nrow(x_train), img_rows, img_cols, 1))
x_test <- array_reshape(x_test, c(nrow(x_test), img_rows, img_cols, 1))
input_shape <- c(img_rows, img_cols, 1)
# Transform RGB values into [0,1] range
x_train <- x_train / 255
x_test <- x_test / 255
cat('x_train_shape:', dim(x_train), '\n')
cat(nrow(x_train), 'train samples\n')
cat(nrow(x_test), 'test samples\n')
# Convert class vectors to binary class matrices
y_train <- to_categorical(y_train, num_classes)
y_test <- to_categorical(y_test, num_classes)
# Define Model -----------------------------------------------------------
# Define model
model <- keras_model_sequential() %>%
layer_conv_2d(filters = 32, kernel_size = c(3,3), activation = 'relu',
input_shape = input_shape) %>%
layer_conv_2d(filters = 64, kernel_size = c(3,3), activation = 'relu') %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_dropout(rate = 0.25) %>%
layer_flatten() %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.5) %>%
layer_dense(units = num_classes, activation = 'softmax')
# Compile model
model %>% compile(
loss = loss_categorical_crossentropy,
optimizer = optimizer_adadelta(),
metrics = c('accuracy')
)
# Train model
model %>% fit(
x_train, y_train,
batch_size = batch_size,
epochs = epochs,
validation_split = 0.2
)
scores <- model %>% evaluate(
x_test, y_test, verbose = 0
)
# Output metrics
cat('Test loss:', scores[[1]], '\n')
cat('Test accuracy:', scores[[2]], '\n')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.