runLSA: Latent Semantic Analysis (LSA)

View source: R/dimensinalityReduction.R

runLSAR Documentation

Latent Semantic Analysis (LSA)

Description

Reduce dimensionality of the single cell dataset using Latent Semantic Analysis (LSA)

Usage

runLSA(
  data,
  dim = NULL,
  var.scale = F,
  centre = F,
  randomized = T,
  seed = 180582,
  use.odgenes = F,
  n.odgenes = NULL,
  plot.odgenes = F
)

Arguments

data

list; GFICF object

dim

integer; Number of dimension which to reduce the dataset.

var.scale

logical; Rescale gficf scores for adjusted variance like in pagoda2 (highly experimental!).

centre

logical; Centre gficf scores before applying reduction (increase separation).

randomized

logical; Use randomized (faster) version for matrix decomposition (default is TRUE).

seed

integer; Initial seed to use.

use.odgenes

boolean; Use significant overdispersed genes respect to ICF values (highly experimental!).

n.odgenes

integer; Number of overdispersed genes to use (highly experimental!). A good choise seems to be usually between 1000 and 3000.

plot.odgenes

boolean; Show significant overdispersed genes respect to ICF values.

Value

The updated gficf object.


dibbelab/gficf documentation built on Nov. 2, 2022, 2:28 a.m.