#' The base Choropleth object.
#' @importFrom R6 R6Class
#' @importFrom ggplot2 scale_color_continuous coord_quickmap coord_map scale_x_continuous scale_y_continuous geom_sf coord_sf
#' @importFrom ggmap get_map ggmap
#' @importFrom RgoogleMaps MaxZoom
#' @importFrom stringr str_extract_all
#' @importFrom dplyr left_join
#' @keywords internal
#' @export
Choropleth = R6Class("Choropleth",
public = list(
# the key objects for this class
user.df = NULL, # input from user
map.df = NULL, # geometry of the map
choropleth.df = NULL, # result of binding user data with our map data
title = "", # title for map
legend = "", # title for legend
warn = TRUE, # warn user on clipped or missing values
ggplot_scale = NULL, # override default scale.
# warning, you need to set "drop=FALSE" for insets to render correctly
# as of ggplot v2.1.0, R6 class variables cannot be assigned to ggplot2 objects
# in the class declaration. Doing so will break binary builds, so assign them
# in the constructor instead
projection = NULL,
ggplot_polygon = NULL,
# variables for working with simple features
projection_sf = NULL,
ggplot_sf = NULL,
# a choropleth map is defined by these two variables
# a data.frame of a map
# a data.frame that expresses values for regions of each map
initialize = function(map.df, user.df)
{
stopifnot(is.data.frame(map.df))
stopifnot("region" %in% colnames(map.df))
self$map.df = map.df
# all input, regardless of map, is just a bunch of (region, value) pairs
stopifnot(is.data.frame(user.df))
stopifnot(c("region", "value") %in% colnames(user.df))
self$user.df = user.df
self$user.df = self$user.df[, c("region", "value")]
stopifnot(anyDuplicated(self$user.df$region) == 0)
# things like insets won't color properly if they are characters, and not factors
if (is.character(self$user.df$value))
{
self$user.df$value = as.factor(self$user.df$value)
}
# initialize the map to the max zoom - i.e. all regions
self$set_zoom(NULL)
# if the user's data contains values which are not on the map,
# then emit a warning if appropriate
if (self$warn)
{
all_regions = unique(self$map.df$region)
user_regions = unique(self$user.df$region)
invalid_regions = setdiff(user_regions, all_regions)
if (length(invalid_regions) > 0)
{
invalid_regions = paste(invalid_regions, collapse = ", ")
warning(paste0("Your data.frame contains the following regions which are not mappable: ", invalid_regions))
}
}
# as of ggplot v2.1.0, R6 class variables cannot be assigned to ggplot2 objects
# in the class declaration. Doing so will break binary builds, so assign them
# in the constructor instead
self$projection = coord_quickmap()
self$ggplot_polygon = geom_polygon(aes(fill = value), color = "dark grey", linewidth = 0.2)
# experimental features for porting to simple features
self$projection_sf = coord_sf()
self$ggplot_sf = geom_sf(aes(fill = value), color = "dark grey", linewidth = 0.2)
},
render = function()
{
self$prepare_map()
if ("sf" %in% class(self$choropleth.df)) {
ggplot(self$choropleth.df) +
self$ggplot_sf +
self$get_scale() +
self$theme_clean() +
ggtitle(self$title) +
self$projection_sf
} else {
ggplot(self$choropleth.df, aes(long, lat, group = group)) +
self$ggplot_polygon +
self$get_scale() +
self$theme_clean() +
ggtitle(self$title) +
self$projection
}
},
# left
get_min_long = function()
{
min(self$choropleth.df$long)
},
# right
get_max_long = function()
{
max(self$choropleth.df$long)
},
# bottom
get_min_lat = function()
{
min(self$choropleth.df$lat)
},
# top
get_max_lat = function()
{
max(self$choropleth.df$lat)
},
get_bounding_box = function(long_margin_percent, lat_margin_percent)
{
c(self$get_min_long(), # left
self$get_min_lat(), # bottom
self$get_max_long(), # right
self$get_max_lat()) # top
},
get_x_scale = function()
{
scale_x_continuous(limits = c(self$get_min_long(), self$get_max_long()))
},
get_y_scale = function()
{
scale_y_continuous(limits = c(self$get_min_lat(), self$get_max_lat()))
},
get_reference_map = function()
{
# note: center is (long, lat) but MaxZoom is (lat, long)
center = c(mean(self$choropleth.df$long),
mean(self$choropleth.df$lat))
max_zoom = MaxZoom(range(self$choropleth.df$lat),
range(self$choropleth.df$long))
get_map(location = center,
zoom = max_zoom,
color = "bw")
},
get_choropleth_as_polygon = function(alpha)
{
geom_polygon(data = self$choropleth.df,
aes(x = long, y = lat, fill = value, group = group), alpha = alpha)
},
render_with_reference_map = function(alpha = 0.5)
{
self$prepare_map()
reference_map = self$get_reference_map()
ggmap(reference_map) +
self$get_choropleth_as_polygon(alpha) +
self$get_scale() +
self$get_x_scale() +
self$get_y_scale() +
self$theme_clean() +
ggtitle(self$title) +
coord_map()
},
# support e.g. users just viewing states on the west coast
clip = function() {
stopifnot(!is.null(private$zoom))
self$user.df = self$user.df[self$user.df$region %in% private$zoom, ]
self$map.df = self$map.df[self$map.df$region %in% private$zoom, ]
},
# for us, discretizing values means
# 1. assigning each value to one of num_colors colors
# 2. formatting the intervals e.g. with commas
#' @importFrom Hmisc cut2
discretize = function()
{
if (is.numeric(self$user.df$value) && private$num_colors > 1) {
# if cut2 uses scientific notation, our attempt to put in commas will fail
scipen_orig = getOption("scipen")
options(scipen=999)
self$user.df$value = cut2(self$user.df$value, g = private$num_colors)
options(scipen=scipen_orig)
levels(self$user.df$value) = sapply(levels(self$user.df$value), self$format_levels)
}
},
bind = function() {
self$choropleth.df = left_join(self$map.df, self$user.df, by="region")
missing_regions = unique(self$choropleth.df[is.na(self$choropleth.df$value), ]$region)
if (self$warn && length(missing_regions) > 0)
{
missing_regions = paste(missing_regions, collapse = ", ");
warning_string = paste("The following regions were missing and are being set to NA:", missing_regions);
warning(warning_string);
}
# does this work?
if ("SpatialPolygonsDataFrame" %in% class(self$choropleth.df)) {
self$choropleth.df = self$choropleth.df[order(self$choropleth.df$order), ];
}
},
prepare_map = function()
{
self$clip() # clip the input - e.g. remove value for Washington DC on a 50 state map
self$discretize() # discretize the input. normally people don't want a continuous scale
self$bind() # bind the input values to the map values
},
#' @importFrom ggplot2 scale_fill_gradient2
get_scale = function()
{
if (!is.null(self$ggplot_scale))
{
self$ggplot_scale
} else if (private$num_colors == 0) {
min_value = min(self$choropleth.df$value, na.rm = TRUE)
max_value = max(self$choropleth.df$value, na.rm = TRUE)
stopifnot(!is.na(min_value) && !is.na(max_value))
scale_fill_gradient2(self$legend, na.value = "black", limits = c(min_value, max_value))
} else if (private$num_colors == 1) {
min_value = min(self$choropleth.df$value, na.rm = TRUE)
max_value = max(self$choropleth.df$value, na.rm = TRUE)
stopifnot(!is.na(min_value) && !is.na(max_value))
# by default, scale_fill_continuous uses a light value for high values and a dark value for low values
# however, this is the opposite of how choropleths are normally colored (see wikipedia)
# these low and high values are from the 7 color brewer blue scale (see colorbrewer.org)
scale_fill_continuous(self$legend, low="#eff3ff", high="#084594", na.value="black", limits=c(min_value, max_value))
} else {
scale_fill_brewer(self$legend, drop=FALSE, na.value="black")
}
},
# theme_clean and theme_inset are used to draw the map over a clean background.
# The difference is that theme_inset also removes the legend of the map.
# These functions used to be based on the code from section 13.19 of
# "Making a Map with a Clean Background" of "R Graphics Cookbook" by Winston Chang.
#
# However, it appears that as of version 2.2.1.9000 of ggplot2 that code simply does not work
# anymore. (In particular, calling ggplotGrob on maps created with those themes (which choroplethr
# does for maps that appear as insets, such as Alaska) was causing a crash).
# So these functions now use theme_void
#' @importFrom ggplot2 theme_void
theme_clean = function()
{
ggplot2::theme_void()
},
# This is a copy of the actual code in theme_void, but it also remove the legend
#' @importFrom ggplot2 theme_void theme "%+replace%"
theme_inset = function()
{
ggplot2::theme_void() %+replace%
ggplot2::theme(legend.position = "none")
},
# Make the output of cut2 a bit easier to read
#
# Adds commas to numbers, removes unnecessary whitespace and allows an arbitrary separator.
#
# @param x A factor with levels created via Hmisc::cut2.
# @param nsep A separator which you wish to use. Defaults to " to ".
#
# @export
# @examples
# data(df_pop_state)
#
# x = Hmisc::cut2(df_pop_state$value, g=3)
# levels(x)
# # [1] "[ 562803, 2851183)" "[2851183, 6353226)" "[6353226,37325068]"
# levels(x) = sapply(levels(x), format_levels)
# levels(x)
# # [1] "[562,803 to 2,851,183)" "[2,851,183 to 6,353,226)" "[6,353,226 to 37,325,068]"
#
# @seealso \url{http://stackoverflow.com/questions/22416612/how-can-i-get-cut2-to-use-commas/}, which this implementation is based on.
format_levels = function(x, nsep=" to ")
{
n = str_extract_all(x, "[-+]?[0-9]*\\.?[0-9]+")[[1]] # extract numbers
v = format(as.numeric(n), big.mark=",", trim=TRUE) # change format
x = as.character(x)
# preserve starting [ or ( if appropriate
prefix = ""
if (substring(x, 1, 1) %in% c("[", "("))
{
prefix = substring(x, 1, 1)
}
# preserve ending ] or ) if appropriate
suffix = ""
if (substring(x, nchar(x), nchar(x)) %in% c("]", ")"))
{
suffix = substring(x, nchar(x), nchar(x))
}
# recombine
paste0(prefix, paste(v,collapse=nsep), suffix)
},
set_zoom = function(zoom)
{
if (is.null(zoom))
{
# initialize the map to the max zoom - i.e. all regions
private$zoom = unique(self$map.df$region)
} else {
stopifnot(all(zoom %in% unique(self$map.df$region)))
private$zoom = zoom
}
},
get_zoom = function() { private$zoom },
set_num_colors = function(num_colors)
{
# if R's ?is.integer actually tested if a value was an integer, we could replace the
# first 2 tests with is.integer(num_colors)
stopifnot(is.numeric(num_colors)
&& num_colors%%1 == 0
&& num_colors >= 0
&& num_colors < 10)
private$num_colors = num_colors
}
),
private = list(
zoom = NULL, # a vector of regions to zoom in on. if NULL, show all
num_colors = 7, # number of colors to use on the map. if 1 then use a continuous scale
has_invalid_regions = FALSE
)
)
#Code taken from https://github.com/cran/choroplethr/blob/master/R/choropleth.R
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.