norm <- function(x) sqrt(sum(x^2))
########## REFERENCES ##########
#####
##### Fletcher, R. (1987)
##### Practical Methods of Optimization, second edition.
##### John Wiley, Chichester.
#####
##### Nocedal, J. and Wright, S. J. (1999)
##### Numerical Optimization.
##### Springer-Verlag, New York.
#####
##### See Section 5.1 of Fletcher
##### See Section 4.2 of Nocedal and Wright
#####
################################
########## COMMENT ##########
##### Our method using one eigendecomposition per iteration is not fastest.
##### Both books recommend using multiple Cholesky decompositions instead.
##### But the eigendecomposition method is simpler to program, easier to
##### understand (which is why both books use it for their theoretical
##### explanation), and hopefully more bulletproof.
#####
##### Our idea for this comes from the way mvrnorm in the MASS package also
##### uses eigendecomposition rather than Cholesky -- also because bulletproof
##### is better than fast.
#############################
trustL1 <- function(objfun, parinit, mu = 0*parinit, one.sided=FALSE, lambda = 1, rinit, rmax, parscale,
iterlim = 100, fterm = sqrt(.Machine$double.eps),
mterm = sqrt(.Machine$double.eps),
minimize = TRUE, blather = FALSE, blather2 = FALSE, ...)
{
if (! is.numeric(parinit))
stop("parinit not numeric")
if (! all(is.finite(parinit)))
stop("parinit not all finite")
d <- length(parinit)
if (missing(parscale)) {
rescale <- FALSE
} else {
rescale <- TRUE
if (length(parscale) != d)
stop("parscale and parinit not same length")
if (! all(parscale > 0))
stop("parscale not all positive")
if (! all(is.finite(parscale) & is.finite(1 / parscale)))
stop("parscale or 1 / parscale not all finite")
}
if (! is.logical(minimize))
stop("minimize not logical")
r <- rinit
theta <- parinit
out <- try(objfun(theta, ...))
grad0 <- out$gradient
outL1 <- try(constraintL1(theta, mu, lambda))
gradL1 <- outL1$gradient
if (inherits(out, "try-error")) {
warning("error in first call to objfun")
return(list(error = out, argument = theta, converged = FALSE,
iterations = 0))
}
## Fix L1-parameters on prior if they would be drawn back after step
is.fixed.theta <- match(names(mu), names(theta))[which(theta[names(mu)] == mu & abs(grad0[names(mu)]) <= lambda)]
if(one.sided){
is.fixed.theta <- match(names(mu), names(theta))[which(theta[names(mu)] == mu & -(grad0[names(mu)]) <= lambda)]
}
if(length(is.fixed.theta) > 0) {
out$gradient <- out$gradient[-is.fixed.theta]
out$hessian <- out$hessian[-is.fixed.theta,-is.fixed.theta]
outL1$gradient <- outL1$gradient[-is.fixed.theta]
outL1$hessian <- outL1$hessian[-is.fixed.theta, -is.fixed.theta]
}
out <- out + outL1
check.objfun.output(out, minimize, d - length(is.fixed.theta))
if (! is.finite(out$value))
stop("parinit not feasible")
accept <- TRUE
if (blather) {
theta.blather <- NULL
theta.try.blather <- NULL
type.blather <- NULL
accept.blather <- NULL
r.blather <- NULL
stepnorm.blather <- NULL
rho.blather <- NULL
val.blather <- NULL
val.try.blather <- NULL
preddiff.blather <- NULL
}
for (iiter in 1:iterlim) {
if(blather2)
print(paste(iiter,out$value,accept))
if (blather) {
theta.blather <- rbind(theta.blather, theta)
r.blather <- c(r.blather, r)
if (accept)
val.blather <- c(val.blather, out$value)
else
val.blather <- c(val.blather, out.value.save)
}
if (accept) {
B <- out$hessian
g <- out$gradient
f <- out$value
out.value.save <- f
if (rescale) {
B <- B / outer(parscale, parscale)
g <- g / parscale
}
if (! minimize) {
B <- (- B)
g <- (- g)
f <- (- f)
}
eout <- eigen(B, symmetric = TRUE)
gq <- as.numeric(t(eout$vectors) %*% g)
}
########## solve trust region subproblem ##########
##### try for Newton #####
is.newton <- FALSE
if (all(eout$values > 0)) {
ptry <- as.numeric(- eout$vectors %*% (gq / eout$values))
if (norm(ptry) <= r)
is.newton <- TRUE
}
##### non-Newton #####
if (! is.newton) {
lambda.min <- min(eout$values)
beta <- eout$values - lambda.min
imin <- beta == 0
C1 <- sum((gq / beta)[! imin]^2)
C2 <- sum(gq[imin]^2)
C3 <- sum(gq^2)
if (C2 > 0 || C1 > r^2) {
is.easy <- TRUE
is.hard <- (C2 == 0)
##### easy cases #####
beta.dn <- sqrt(C2) / r
beta.up <- sqrt(C3) / r
fred <- function(beep) {
if (beep == 0) {
if (C2 > 0)
return(- 1 / r)
else
return(sqrt(1 / C1) - 1 / r)
}
return(sqrt(1 / sum((gq / (beta + beep))^2)) - 1 / r)
}
if (fred(beta.up) <= 0) {
uout <- list(root = beta.up)
} else if (fred(beta.dn) >= 0) {
uout <- list(root = beta.dn)
} else {
uout <- uniroot(fred, c(beta.dn, beta.up))
}
wtry <- gq / (beta + uout$root)
ptry <- as.numeric(- eout$vectors %*% wtry)
} else {
is.hard <- TRUE
is.easy <- FALSE
##### hard-hard case #####
wtry <- gq / beta
wtry[imin] <- 0
ptry <- as.numeric(- eout$vectors %*% wtry)
utry <- sqrt(r^2 - sum(ptry^2))
if (utry > 0) {
vtry <- eout$vectors[ , imin, drop = FALSE]
vtry <- vtry[ , 1]
ptry <- ptry + utry * vtry
}
}
}
########## predicted versus actual change ##########
preddiff <- sum(ptry * (g + as.numeric(B %*% ptry) / 2))
## Compute theta.try
## Fix prior parameters which are on prior (catch-up from above)
if(length(is.fixed.theta) > 0) {
ptry.new <- structure(rep(0, length(parinit)), names = names(parinit))
ptry.new[names(parinit)[-is.fixed.theta]] <- ptry
ptry <- ptry.new
}
if (rescale) {
theta.try <- theta + ptry / parscale
} else {
theta.try <- theta + ptry
}
## Set on prior value if step-over
chgsgn <- (theta[names(mu)]-mu)*(theta.try[names(mu)]-mu)
theta.try[names(mu)][chgsgn < 0] <- mu[chgsgn < 0]
if(one.sided){
theta.try[names(mu)][theta.try[names(mu)] < mu] <- mu[theta.try[names(mu)] < mu]
}
## Scale down step length if step over prior
# chgsgn <- (theta[names(mu)]-mu)*(theta.try[names(mu)]-mu)
# steplength.red <- (mu - theta[names(mu)])[chgsgn < 0]
# steplength.full <- (theta.try[names(mu)] - theta[names(mu)])[chgsgn < 0]
# if(length(steplength.red) > 0) {
# fact <- abs(steplength.red/steplength.full)
# theta.try <- theta + min(fact)*(theta.try-theta)
# theta.try[names(mu)][chgsgn < 0][which.min(fact)] <- mu[chgsgn < 0][which.min(fact)]
# ptry.red <- theta.try - theta
# if(length(is.fixed.theta) > 0) ptry.red <- ptry.red[-is.fixed.theta]
# preddiff <- sum(ptry.red * (g + as.numeric(B %*% ptry.red) / 2))
#
# }
out <- try(objfun(theta.try, ...))
outL1 <- try(constraintL1(theta.try, mu, lambda))
if (inherits(out, "try-error"))
break
## Fix L1-parameters on prior if they would be drawn back after step (theta.try)
# is.fixed.theta.try <- which(names(theta.try)%in%names(mu))[which(theta.try[names(mu)] == mu & abs(out$gradient[names(mu)]) <= lambda)]
is.fixed.theta.try <- match(names(mu), names(theta.try))[which(theta.try[names(mu)] == mu & abs(out$gradient[names(mu)]) <= lambda)]
if(one.sided){
is.fixed.theta.try <- match(names(mu), names(theta.try))[which(theta.try[names(mu)] == mu & -(out$gradient[names(mu)]) <= lambda)]
}
if(length(is.fixed.theta.try) > 0) {
out$gradient <- out$gradient[-is.fixed.theta.try]
out$hessian <- out$hessian[-is.fixed.theta.try,-is.fixed.theta.try]
outL1$gradient <- outL1$gradient[-is.fixed.theta.try]
outL1$hessian <- outL1$hessian[-is.fixed.theta.try, -is.fixed.theta.try]
}
out <- out + outL1
check.objfun.output(out, minimize, d - length(is.fixed.theta.try))
ftry <- out$value
if (! minimize)
ftry <- (- ftry)
rho <- (ftry - f) / preddiff
########## termination test ##########
if (ftry < Inf) {
is.terminate <- abs(ftry - f) < fterm || abs(preddiff) < mterm
} else {
is.terminate <- FALSE
rho <- (- Inf)
}
##### adjustments #####
if (is.terminate) {
if (ftry < f) {
accept <- TRUE
theta <- theta.try
is.fixed.theta <- is.fixed.theta.try
}
} else {
if (rho < 1 / 4) {
accept <- FALSE
r <- r / 4
} else {
accept <- TRUE
theta <- theta.try
is.fixed.theta <- is.fixed.theta.try
if (rho > 3 / 4 && (! is.newton))
r <- min(2 * r, rmax)
}
}
if (blather) {
theta.try.blather <- rbind(theta.try.blather, theta.try)
val.try.blather <- c(val.try.blather, out$value)
accept.blather <- c(accept.blather, accept)
preddiff.blather <- c(preddiff.blather, preddiff)
stepnorm.blather <- c(stepnorm.blather, norm(ptry))
if (is.newton) {
mytype <- "Newton"
} else {
if (is.hard) {
if (is.easy) {
mytype <- "hard-easy"
} else {
mytype <- "hard-hard"
}
} else {
mytype <- "easy-easy"
}
}
type.blather <- c(type.blather, mytype)
rho.blather <- c(rho.blather, rho)
}
if (is.terminate)
break
}
if (inherits(out, "try-error")) {
out <- list(error = out, argument = theta.try, converged = FALSE)
} else {
out <- try(objfun(theta, ...))
outL1 <- try(constraintL1(theta.try, mu, lambda))
if (inherits(out, "try-error")) {
out <- list(error = out)
warning("error in last call to objfun")
} else {
out <- out + outL1
check.objfun.output(out, minimize, d)
}
out$argument <- theta
out$converged <- is.terminate
}
out$iterations <- iiter
if (blather) {
dimnames(theta.blather) <- NULL
out$argpath <- theta.blather
dimnames(theta.try.blather) <- NULL
out$argtry <- theta.try.blather
out$steptype <- type.blather
out$accept <- accept.blather
out$r <- r.blather
out$rho <- rho.blather
out$valpath <- val.blather
out$valtry <- val.try.blather
if (! minimize)
preddiff.blather <- (- preddiff.blather)
out$preddiff <- preddiff.blather
out$stepnorm <- stepnorm.blather
}
return(out)
}
check.objfun.output <- function(obj, minimize, dimen)
{
if (! is.list(obj))
stop("objfun returned object that is not a list")
foo <- obj$value
if (is.null(foo))
stop("objfun returned list that does not have a component 'value'")
if (! is.numeric(foo))
stop("objfun returned value that is not numeric")
if (length(foo) != 1)
stop("objfun returned value that is not scalar")
if (is.na(foo) || is.nan(foo))
stop("objfun returned value that is NA or NaN")
if (minimize && foo == (-Inf))
stop("objfun returned -Inf value in minimization")
if ((! minimize) && foo == Inf)
stop("objfun returned +Inf value in maximization")
if (is.finite(foo)) {
bar <- obj$gradient
if (is.null(bar))
stop("objfun returned list without component 'gradient' when value is finite")
if (! is.numeric(bar))
stop("objfun returned gradient that is not numeric")
if (length(bar) != dimen)
stop(paste("objfun returned gradient that is not vector of length", dimen))
if (! all(is.finite(bar)))
stop("objfun returned gradient not having all elements finite")
baz <- obj$hessian
if (is.null(baz))
stop("objfun returned list without component 'hessian' when value is finite")
if (! is.numeric(baz))
stop("objfun returned hessian that is not numeric")
if (! is.matrix(baz))
stop("objfun returned hessian that is not matrix")
if (! all(dim(baz) == dimen))
stop(paste("objfun returned hessian that is not", dimen, "by", dimen, "matrix"))
if (! all(is.finite(baz)))
stop("objfun returned hessian not having all elements finite")
}
return(TRUE)
}
#' Soft L1 constraint on parameters
#'
#' @param p Namec numeric, the parameter value
#' @param mu Named numeric, the prior values
#' @param lambda Named numeric of length of mu or numeric of length one.
#' @param fixed Named numeric with fixed parameter values (contribute to the prior value
#' but not to gradient and Hessian)
#' @return List of class \code{obj}, i.e. objective value, gradient and Hessian as list.
#' @details Computes the constraint value
#' \deqn{\lambda\|p-\mu\|}{lambda*abs(p-mu)}
#' and its derivatives with respect to p.
#' @seealso \link{wrss}, \link{summation}, \link{constraintL2}, \link{constraintExp2}
#' @examples
#' p <- c(A = 1, B = 2, C = 3)
#' mu <- c(A = 0, B = 0)
#' lambda <- c(A = 0.1, B = 1)
#' constraintL1(p, mu, lambda)
constraintL1 <- function(p, mu, lambda = 1, fixed = NULL) {
## Augment sigma if length = 1
if(length(lambda) == 1)
lambda <- structure(rep(lambda, length(mu)), names = names(mu))
## Extract contribution of fixed pars and delete names for calculation of gr and hs
par.fixed <- intersect(names(mu), names(fixed))
sumOfFixed <- 0
if(!is.null(par.fixed)) sumOfFixed <- sum(lambda[par.fixed]*abs(fixed[par.fixed] - mu[par.fixed]))
## Compute constraint value and derivatives
parameters <- intersect(names(p), names(mu))
value <- sum(lambda[parameters]*abs(p[parameters] - mu[parameters])) + sumOfFixed
gradient <- rep(0, length(p)); names(gradient) <- names(p)
gradient[parameters][p[parameters] > mu[parameters]] <- lambda[parameters][p[parameters] > mu[parameters]]
gradient[parameters][p[parameters] < mu[parameters]] <- -lambda[parameters][p[parameters] < mu[parameters]]
hessian <- matrix(0, length(p), length(p), dimnames = list(names(p), names(p)))
diag(hessian)[parameters] <- 0
dP <- attr(p, "deriv")
if(!is.null(dP)) {
gradient <- as.vector(gradient %*% dP)
names(gradient) <- colnames(dP)
hessian <- t(dP) %*% hessian %*% dP
colnames(hessian) <- colnames(dP)
rownames(hessian) <- colnames(dP)
}
out <- list(value = value, gradient = gradient, hessian = hessian)
class(out) <- c("obj", "list")
return(out)
}
#' Soft L1 prior on parameters
#'
#' @param p Namec numeric, the parameter value
#' @param mu Named numeric, the prior values
#' @param lambda Named numeric of length of mu or numeric of length one.
#' @param fixed Named numeric with fixed parameter values (contribute to the prior value
#' but not to gradient and Hessian)
#' @return List of class \code{obj}, i.e. objective value, gradient and Hessian as list.
#' @details Computes the constraint value
#' \deqn{\lambda\|p-\mu\|}{lambda*abs(p-mu)}
#' and its derivatives with respect to p.
#' @seealso \link{wrss}, \link{summation}, \link{constraintL2}, \link{constraintExp2}
#' @examples
#' p <- c(A = 1, B = 2, C = 3)
#' mu <- c(A = 0, B = 0)
#' lambda <- c(A = 0.1, B = 1)
#' constraintL1(p, mu, lambda)
# priorL1 <- function(p, mu, lambda = "lambda", fixed = NULL) {
#
# ## Extract contribution of fixed pars and delete names for calculation of gr and hs
# par.fixed <- intersect(names(mu), names(fixed))
# sumOfFixed <- 0
# if(!is.null(par.fixed)) sumOfFixed <- sum(c(fixed, p)[lambda]*abs(fixed[par.fixed] - mu[par.fixed]))
#
# ## Compute constraint value and derivatives
# par <- intersect(names(p), names(mu))
# par0 <- setdiff(par, lambda)
#
# value <- sum(c(fixed, p)[lambda]*abs(p[par] - mu[par])) + sumOfFixed
#
#
# direction <- rep(0, length(p)); names(direction) <- names(p)
# direction[par][p[par] > mu[par]] <- 1
# direction[par][p[par] < mu[par]] <- -1
# gradient <- c(fixed, p)[lambda]*direction
# if(lambda %in% names(p))
# gradient[lambda] <- value
#
# hessian <- matrix(0, length(p), length(p), dimnames = list(names(p), names(p)))
# diag(hessian)[par] <- 0
# if(lambda %in% names(p)) {
# hessian[lambda, lambda] <- 0
# hessian[lambda, par0] <- hessian[par0, lambda] <- direction[par0]
# }
#
# dP <- attr(p, "deriv")
# if(!is.null(dP)) {
# gradient <- as.vector(gradient %*% dP)
# names(gradient) <- colnames(dP)
# hessian <- t(dP) %*% hessian %*% dP
# colnames(hessian) <- colnames(dP)
# rownames(hessian) <- colnames(dP)
# }
#
# out <- list(value = value, gradient = gradient, hessian = hessian)
# class(out) <- c("obj", "list")
#
# return(out)
#
#
# }
#
#
# constraintLeins <- function(p, mu, lambda = 1, tol = 1e-3) {
#
# parameters <- intersect(names(p), names(mu))
#
#
# parameters.l1 <- parameters[abs(p[parameters] - mu[parameters]) > tol]
# parameters.l2 <- parameters[abs(p[parameters] - mu[parameters]) <= tol]
#
# sigma <- sqrt(tol/lambda)
# offset <- lambda*tol - .5*(tol/sigma)^2
#
# prior1 <- prior2 <- as.obj(p)
#
# if(length(parameters.l1) > 0) {
# prior1 <- constraintL1(p, mu[parameters.l1], lambda)
# if(prior1$value > 0) prior1$value <- prior1$value - offset
# }
# if(length(parameters.l2) > 0) {
# prior2 <- constraintL2(p, mu[parameters.l2], sigma)
# }
#
# prior1 + prior2
#
# }
#' Compute the L1 norm of residuals
#'
#' @param nout data.frame (result of \link{res})
#' @return list with entries value (numeric, the weighted residual sum of squares),
#' gradient (numeric, gradient) and
#' hessian (matrix of type numeric).
l1norm <- function(nout) {
sign.res <- sign(nout$weighted.residual)
obj <- sum(abs(nout$weighted.residual))
grad <- NULL
hessian <- NULL
if(!is.null(attr(nout, "deriv"))) {
nout$sigma[is.na(nout$sigma)] <- 1 #replace by neutral element
sens <- as.matrix(attr(nout, "deriv")[,-(1:2)])
grad <- apply(-sign.res*sens/nout$sigma, 2, sum)
names(grad) <- colnames(sens)
hessian <- t(sens/nout$sigma)%*%(sens/nout$sigma)
}
out <- list(value=obj, gradient=grad, hessian=hessian)
class(out) <- c("obj", "list")
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.