library(BiocStyle)
knitr::opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE)

Downloading the data

We obtain a single-cell RNA sequencing dataset of the mouse haematopoietic stem cells from @nestorowa2016singlecell. Counts for endogenous genes and spike-in transcripts are available from the Gene Expression Omnibus using the accession number GSE81682. We download and cache them using the r Biocpkg("BiocFileCache") package.

library(BiocFileCache)
bfc <- BiocFileCache("raw_data", ask = FALSE)
count.file <- bfcrpath(bfc, file.path("ftp://ftp.ncbi.nlm.nih.gov/geo/series",
    "GSE81nnn/GSE81682/suppl/GSE81682_HTSeq_counts.txt.gz"))

We read this into memory as a sparse matrix.

library(scater)
counts <- readSparseCounts(count.file)
dim(counts)

Downloading the per-cell metadata

We download the per-cell metadata from the website.

celltype.file <- bfcrpath(bfc, file.path(
    "http://blood.stemcells.cam.ac.uk/data/all_cell_types.txt"))
celltype <- read.delim(celltype.file)
celltype <- celltype[match(colnames(counts), rownames(celltype)),]
stopifnot(identical(colnames(counts), rownames(celltype)))
head(celltype)

We convert this into a sparse logical matrix of identities.

library(Matrix)
celltype <- as(as.matrix(celltype), "lgCMatrix")
head(celltype)

We also obtain a matrix of flow cytometry intensities:

flowcyt.file <- bfcrpath(bfc, file.path("http://blood.stemcells.cam.ac.uk",
    "data/coordinates_gene_counts_flow_cytometry.txt.gz"))
flowcyt <- read.delim(flowcyt.file, row.names=1)
flowcyt <- flowcyt[match(colnames(counts), rownames(flowcyt)),]
rownames(flowcyt) <- colnames(counts)

is.diffusion <- grep("^DC[0-9]+$", colnames(flowcyt))
colnames(flowcyt)[is.diffusion]
is.facs <- setdiff(grep("^ENSMUSG[0-9]+$", colnames(flowcyt), invert=TRUE), is.diffusion)
colnames(flowcyt)[is.facs]

We pack this into a single DataFrame:

coldata <- DataFrame(cell.type=I(celltype),
    diffusion=I(as.matrix(flowcyt[,is.diffusion])),
    FACS=I(as.matrix(flowcyt[,is.facs])))
coldata

Saving to file

We now save all of the relevant components to file for upload to r Biocpkg("ExperimentHub").

path <- file.path("scRNAseq", "nestorowa-hsc", "2.0.0")
dir.create(path, showWarnings=FALSE, recursive=TRUE)
saveRDS(counts, file=file.path(path, "counts.rds"))
saveRDS(coldata, file=file.path(path, "coldata.rds"))

Session information

sessionInfo()

References



drisso/scRNAseq documentation built on Feb. 16, 2021, 1:18 a.m.