library(BiocStyle) knitr::opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE)
We obtain a single-cell RNA sequencing dataset of the mouse haematopoietic stem cells from @paul2015transcriptional.
Counts for endogenous genes and spike-in transcripts are available from the Gene Expression Omnibus
using the accession number GSE72857.
We download and cache them using the r Biocpkg("BiocFileCache")
package.
library(BiocFileCache) bfc <- BiocFileCache("raw_data", ask = FALSE) base.url <- file.path("ftp://ftp.ncbi.nlm.nih.gov/geo", "series/GSE72nnn/GSE72857/suppl") fname.A <- bfcrpath(bfc, file.path(base.url, "GSE72857_umitab.txt.gz"))
We read this into memory as a sparse matrix.
library(scater) counts <- readSparseCounts(fname.A, quote='"') dim(counts)
We pull down the metadata from GEO as well.
meta.A <- bfcrpath(bfc, file.path(base.url, "GSE72857_experimental_design.txt.gz")) meta <- read.delim(meta.A, skip=19, header=TRUE, stringsAsFactors=FALSE) meta <- DataFrame(meta) meta
We check that the cell names match up with the matrix.
m <- match(colnames(counts), meta$Well_ID) stopifnot(all(!is.na(m))) meta <- meta[m,]
We now save all of the relevant components to file for upload to r Biocpkg("ExperimentHub")
.
path <- file.path("scRNAseq", "paul-hsc", "2.2.0") dir.create(path, showWarnings=FALSE, recursive=TRUE) saveRDS(counts, file=file.path(path, "counts.rds")) saveRDS(meta, file=file.path(path, "coldata.rds"))
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.