library(BiocStyle) knitr::opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE)
We obtain a single-cell RNA sequencing dataset of human radial glial cells from @pollen2015molecular. Counts for endogenous genes are available from Dropbox (why would you do that!?) via https://www.pollenlab.org/datasets.
library(BiocFileCache) bfc <- BiocFileCache("raw_data", ask = FALSE) exprs.path <- bfcrpath(bfc, "https://www.dropbox.com/s/rjrkq96li4j4rvn/oRG%20paper%20-%20counts.txt?dl=1") library(scuttle) mat <- readSparseCounts(exprs.path, row.names=1) dim(mat) str(dimnames(mat))
We also read in the per-cell metadata from an Excel file (why!?).
meta.path <- bfcrpath(bfc, "https://www.dropbox.com/s/rb9tl4gjswrxfy9/Pollen%20et%20al%202015%20updated%20metadata.xlsx?dl=1") library(readxl) meta <- DataFrame(read_excel(meta.path), check.names=FALSE) meta$`AlignmentRate, Pairs` <- as.numeric(sub("%$", "", meta$`AlignmentRate, Pairs`))/100 rownames(meta) <- meta$Cell stopifnot(all(colnames(mat) %in% sort(meta$Cell))) meta <- meta[colnames(mat),] meta
Making sure we can assemble the final SCE:
sce <- SingleCellExperiment(list(counts=mat), colData=meta) sce
We now save all of the relevant components to file for upload to r Biocpkg("ExperimentHub")
.
path <- file.path("scRNAseq", "pollen-glia", "2.6.0") dir.create(path, showWarnings=FALSE, recursive=TRUE) saveRDS(mat, file=file.path(path, "counts.rds")) saveRDS(meta, file=file.path(path, "coldata.rds"))
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.