#This script does a Hamiltonian MCMC leapfrog proposal with sampling for gradient for the LOLOG model:
#' @export
#'
HMC_proposal <- function(theta_0, #the current paramter value - starting position for HMC
net, #the observed network,
s, #the fixed edge permutation
formula_rhs, #rhs formula of model
prior = function(theta){(sum(abs(theta)<10) == length(theta))*((1/20)**length(theta))}, #prior function for theta
prior_grad = NULL, #specify prior derivative to get speed up
L_steps, #the number of leapfrog steps
epsilon = NULL, #size of the leapfrog step
epsilon_factor = 1, #used when epsilon is null to amend the generate "ideal epsilon"
momentum_sigma = NULL, #sigma used in momentum function generator
change_off = NULL,
change_on = NULL,
HMC_grad_samples = NULL,
...
){
#Rename the theta_0 as q - in line with HMC literature
q <- theta_0
names(q) <- NULL
top_deriv <- lolog::calculateStatistics(as.formula(paste("net ~ ",formula_rhs))) #used inside q_grad function
e <- length(change_on)
#Make the lolog formula
formula <- as.formula(paste("net ~",formula_rhs,sep = ""))
#calculate the change stats for the given permutaion and graph
if(is.null(change_on)){
change_on <- lolog_change_stats(net,s,formula_rhs)
}
#Calculate gradient of the log liklihood function for LOLOG
q_grad <- function(q,change_on=NULL,network=NULL,sample_weights){
if(is.null(prior_grad)){
prior_deriv <- (numDeriv::grad(prior,q,net=net,change_on = change_on)/prior(q,net=net,change_on = change_on))
}
else{prior_deriv <- prior_grad(q,net=net,change_on = change_on)/prior(q,net=net,change_on = change_on)}
if(sum(is.na(prior_deriv)) != 0){
prior_deriv <- rep(0,length(q))
}
bottom_deriv <- bottom_deriv_helper_cpp(change_on,q,weights = sample_weights)
#return their sum with the correct signs
return(-prior_deriv - top_deriv + bottom_deriv)
}
#If epsilon is null put it as the mimimum eigen value of the momentum matrix:
if(is.null(epsilon)){
epsilon <- (min(eigen(momentum_sigma)$values)**0.5)*epsilon_factor
}
#If momentum is not invertible, make it invertible and define the inverse matrix:r
if(abs(det(momentum_sigma)) < 10**(-6)){
for(i in 10**seq(-6,20,1)){
if(abs(det(momentum_sigma))>10**(-6)){
break
}
else{
momentum_sigma <- momentum_sigma + diag(min(diag(momentum_sigma))*i,dim(momentum_sigma)[1])
}
}
}
momentum_sigma_inv <- solve(momentum_sigma)
#===== Sample the change stats probabilistically
#Calculate the z-score for each change stat:
if(!is.null(HMC_grad_samples)){
tmp <- do.call(rbind,change_on)
tmp <- scale(tmp)
weights <- abs(rowSums(tmp[,2:dim(tmp)[2]]))
rm(list=c("tmp"))
weights <- weights/sum(weights)
if(HMC_grad_samples < 1){
HMC_grad_samples <- HMC_grad_samples*e
}
samp <- sample(1:e,ceiling(HMC_grad_samples),prob = weights)
sample_weights <- weights[samp]
change_on_sample <- change_on[samp]
}else{
change_on_sample <- change_on
sample_weights <- NULL
}
#Generate initial momentum
p_init <- MASS::mvrnorm(1,rep(0,length(q)),Sigma = momentum_sigma)
p <- p_init
#Do half momentum update fist
p <- p - (epsilon/2)*q_grad(q,change_on = change_on_sample,sample_weights = sample_weights)
#Do L_steps full updates
if(L_steps != 1){
for(i in 1:(L_steps-1)){
q <- q + epsilon*(momentum_sigma_inv%*%p)
p <- p - epsilon*q_grad(q,change_on = change_on_sample,sample_weights = sample_weights)
}
}
#Do final updates
p_old <- p #used for prob factor
q <- q + epsilon*(momentum_sigma_inv%*%p)
p <- p - (epsilon/2)*q_grad(q,change_on = change_on_sample,sample_weights = sample_weights)
#negate the momentum variable - does not actaully effect anything
p <- -p
#prob factor takes account of the joint distribution in the metropolis step
prob_factor = exp(0.5*t(p_old)%*%momentum_sigma_inv%*%p_old - 0.5*t(p)%*%momentum_sigma_inv%*%p)
if(is.nan(prob_factor)){prob_factor = 0}
#print(paste("prob factor was : ",prob_factor))
return(list(proposal = as.vector(q), prob_factor = prob_factor))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.