#' Estimate Parameters From Real Datasets by dropsim
#'
#' This function is used to estimate useful parameters from a real dataset by
#' using `fit_parameters` function in dropsim package.
#' @param ref_data A count matrix. Each row represents a gene and each column
#' represents a cell.
#' @param verbose Logical.
#' @param seed An integer of a random seed.
#' @return A list contains the estimated parameters and the results of execution
#' detection.
#' @export
#'
#' @references
#' Github URL: <https://github.com/marchinilab/dropsim>
#'
#' @examples
#' \dontrun{
#' ref_data <- simmethods::data
#' ## estimation
#' estimate_result <- simmethods::dropsim_estimation(
#' ref_data = ref_data,
#' verbose = TRUE,
#' seed = 111
#' )
#' }
#'
dropsim_estimation <- function(ref_data,
verbose = FALSE,
seed
){
##############################################################################
#### Environment ###
##############################################################################
if(!requireNamespace("dropsim", quietly = TRUE)){
message("dropsim is not installed on your device...")
message("Installing dropsim...")
devtools::install_github("marchinilab/dropsim")
}
##############################################################################
#### Check ###
##############################################################################
if(!is.matrix(ref_data)){
ref_data <- as.matrix(ref_data)
}
##############################################################################
#### Estimation ###
##############################################################################
if(verbose){
message("Estimating parameters using dropsim")
}
# Seed
set.seed(seed)
# Estimation
estimate_detection <- peakRAM::peakRAM(
estimate_result <- dropsim::fit_parameters(ref_data, plot = FALSE)
)
##############################################################################
#### Ouput ###
##############################################################################
estimate_output <- list(estimate_result = estimate_result,
estimate_detection = estimate_detection)
return(estimate_output)
}
#' Simulate Datasets by dropsim
#'
#' This function is used to simulate datasets from learned parameters by `simulateDGE`
#' function in dropsim package.
#'
#' @param parameters A object generated by [dropsim::fit_parameters()]
#' @param other_prior A list with names of certain parameters. Some methods need
#' extra parameters to execute the estimation step, so you must input them. In
#' simulation step, the number of cells, genes, groups, batches, the percent of
#' DEGs are usually customed, so before simulating a dataset you must point it out.
#' See `Details` below for more information.
#' @param return_format A character. Alternative choices: list, SingleCellExperiment,
#' Seurat, h5ad. If you select `h5ad`, you will get a path where the .h5ad file saves to.
#' @param verbose Logical. Whether to return messages or not.
#' @param seed A random seed.
#' @importFrom methods slot<-
#' @export
#' @details
#' In dropsim, users can only set `nCells` and `nGenes` directly.
#' For more parameters in dropsim, check [dropsim::simulateDGE()] and see `Examples`.
#'
#' @references
#'
#' Github URL: <https://github.com/marchinilab/dropsim>
#'
#' @examples
#' \dontrun{
#' ref_data <- simmethods::data
#' ## estimation
#' estimate_result <- simmethods::dropsim_estimation(
#' ref_data = ref_data,
#' verbose = TRUE,
#' seed = 111
#' )
#'
#' # 1) Simulate with default parameters
#' simulate_result <- simmethods::dropsim_simulation(
#' parameters = estimate_result[["estimate_result"]],
#' other_prior = NULL,
#' return_format = "list",
#' verbose = TRUE,
#' seed = 111
#' )
#' ## counts
#' counts <- simulate_result[["simulate_result"]][["count_data"]]
#' dim(counts)
#'
#' # 2) 2000 cells and 5000 genes
#' simulate_result <- simmethods::dropsim_simulation(
#' parameters = estimate_result[["estimate_result"]],
#' other_prior = list(nCells = 2000,
#' nGenes = 5000),
#' return_format = "list",
#' verbose = TRUE,
#' seed = 111
#' )
#'
#' ## counts
#' counts <- simulate_result[["simulate_result"]][["count_data"]]
#' dim(counts)
#' }
#'
dropsim_simulation <- function(parameters,
other_prior = NULL,
return_format,
verbose = FALSE,
seed
){
##############################################################################
#### Environment ###
##############################################################################
if(!requireNamespace("dropsim", quietly = TRUE)){
message("dropsim is not installed on your device...")
message("Installing dropsim...")
devtools::install_github("marchinilab/dropsim")
}
other_prior[["parameters"]] <- parameters
## nCells
if(!is.null(other_prior[["nCells"]])){
methods::slot(other_prior[["parameters"]], "n_cells") <- as.integer(other_prior[["nCells"]])
}
## nGenes
if(!is.null(other_prior[["nGenes"]])){
methods::slot(other_prior[["parameters"]], "n_genes") <- as.integer(other_prior[["nGenes"]])
}
##############################################################################
#### Check ###
##############################################################################
simulate_formals <- simutils::change_parameters(function_expr = "dropsim::simulateDGE",
other_prior = other_prior,
step = "simulation")
# Return to users
message(paste0("nCells: ", other_prior[['parameters']]@n_cells))
message(paste0("nGenes: ", other_prior[['parameters']]@n_genes))
##############################################################################
#### Simulation ###
##############################################################################
if(verbose){
message("Simulating datasets using dropsim")
}
# Seed
simulate_formals[["seed"]] <- seed
# Simulation
simulate_detection <- peakRAM::peakRAM(
simulate_result <- do.call(dropsim::simulateDGE, simulate_formals)
)
##############################################################################
#### Format Conversion ###
##############################################################################
counts <- as.matrix(simulate_result[["counts"]])
## colnames rownames
colnames(counts) <- paste0("Cell", 1:ncol(counts))
rownames(counts) <- paste0("Gene", 1:nrow(counts))
## col_data
col_data <- data.frame("cell_name" = colnames(counts))
## row data
row_data <- data.frame("gene_name" = rownames(counts))
# Establish SingleCellExperiment
simulate_result <- SingleCellExperiment::SingleCellExperiment(list(counts = counts),
colData = col_data,
rowData = row_data)
simulate_result <- simutils::data_conversion(SCE_object = simulate_result,
return_format = return_format)
##############################################################################
#### Ouput ###
##############################################################################
simulate_output <- list(simulate_result = simulate_result,
simulate_detection = simulate_detection)
return(simulate_output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.