#' Get Information of BASiCS
#'
#' @param ... ...
#'
#' @return A list contains the information of method and default parameters
#' @import simutils
#' @export
#'
#' @examples
#' BASiCS_method_definition <- BASiCS_method_definition()
#'
BASiCS_method_definition <- function(...){
BASiCS_parameters <- parameter_sets(
param_reference(
id = "counts",
type = c("matrix", "SingleCellExperiment"),
default = NULL,
process = "estimation",
force = TRUE,
description = "Either a counts matrix or a SingleCellExperiment object containing count data to estimate parameters from.",
function_name = "BASiCSEstimate"
),
param_dataframe(
id = "spike.info",
process = "estimation",
description = "data.frame describing spike-ins with two columns: 'Name' giving the names of the spike-in features (must match rownames(counts)) and 'Input' giving the number of input molecules.",
function_name = "BASiCSEstimate"
),
param_vector(
id = "batch",
process = "estimation",
force = TRUE,
description = "Vector giving the batch that each cell belongs to.",
function_name = "BASiCSEstimate"
),
param_numeric(
id = "n",
default = 20000,
process = "estimation",
description = "Total number of MCMC iterations. Must be >= max(4, thin) and a multiple of thin.",
function_name = "BASiCSEstimate"
),
param_numeric(
id = "thin",
default = 10,
process = "estimation",
description = "Thining period for the MCMC sampler. Must be >= 2.",
function_name = "BASiCSEstimate"
),
param_numeric(
id = "burn",
default = 5000,
process = "estimation",
description = "Burn-in period for the MCMC sampler. Must be in the range 1 <= burn < n and a multiple of thin.",
function_name = "BASiCSEstimate"
),
param_Boolean(
id = "params",
default = TRUE,
process = "estimation",
description = "Logical. Whether to use regression to identify over-dispersion. See BASiCS_MCMC for details.",
function_name = "BASiCSEstimate"
),
param_Boolean(
id = "verbose",
default = TRUE,
process = "estimation",
description = "Logical. Whether to print progress messages.",
function_name = "BASiCSEstimate"
),
param_Boolean(
id = "progress",
default = TRUE,
process = "estimation",
description = "Logical. Whether to print additional BASiCS progress messages.",
function_name = "BASiCSEstimate"
),
param_others(
id = "params",
type = "BASiCSParams",
default = "newBASiCSParams()",
description = "BASiCSParams object to store estimated values in.",
function_name = c("BASiCSEstimate", "BASiCSSimulate")
),
param_Boolean(
id = "sparsify",
default = TRUE,
description = "Logical. Whether to automatically convert assays to sparse matrices if there will be a size reduction.",
function_name = "BASiCSSimulate"
)
)
BASiCS_method <- method_definition(
method = "BASiCS",
programming = "R",
url = "https://bioconductor.org/packages/release/bioc/html/BASiCS.html",
authors = authors_definition(
first = "Catalina",
last = "Vallejos",
email = "catalina@mrc-bsu.cam.ac.uk",
github = "https://github.com/catavallejos/BASiCS",
orcid = NULL
),
manuscript = manuscript_definition(
title = "BASiCS: Bayesian analysis of single-cell sequencing data",
doi = "10.1371/journal.pcbi.1004333",
journal = "PLoS Computational Biology",
date = "2015",
peer_review = TRUE
),
description = "BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori.",
vignette = "http://47.254.148.113/software/Simsite/references/methods/17-basics/")
list(BASiCS_method = BASiCS_method,
BASiCS_parameters = BASiCS_parameters)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.