#' Get Information of zinbwave
#'
#' @param ... ...
#'
#' @return A list contains the information of method and default parameters
#' @import simutils
#' @importFrom splatter newSimpleParams
#' @export
#'
#' @examples
#' zinbwave_method_definition <- zinbwave_method_definition()
zinbwave_method_definition <- function(...){
zinbwave_parameters <- parameter_sets(
param_reference(
id = "counts",
type = c("matrix"),
default = NULL,
force = TRUE,
process = "estimation",
description = "A counts matrix containing count data to estimate parameters from.",
function_name = "zinbEstimate"
),
param_others(
id = "design.samples",
type = "matrix",
default = NULL,
process = "estimation",
description = "Design matrix of sample-level covariates.",
function_name = "zinbEstimate"
),
param_others(
id = "design.genes",
type = "matrix",
default = NULL,
process = "estimation",
description = "Design matrix of gene-level covariates.",
function_name = "zinbEstimate"
),
param_Boolean(
id = "common.disp",
default = TRUE,
description = "Logical. Whether or not a single dispersion for all features is estimated.",
function_name = "zinbEstimate"
),
param_integer(
id = "iter.init",
default = 2L,
lower = 1L,
description = "The number of iterations to use for initialization.",
function_name = "zinbEstimate"
),
param_integer(
id = "iter.opt",
default = 25L,
lower = 1L,
description = "The number of iterations to use for optimization.",
function_name = "zinbEstimate"
),
param_numeric(
id = "stop.opt",
default = 1e-04,
lower = 0,
border = FALSE,
description = "Stopping criterion for optimization.",
function_name = "zinbEstimate"
),
param_others(
id = "params",
default = "newZINBParams()",
type = "newZINBParams",
description = "ZINBParams object to store estimated values in.",
function_name = "zinbEstimate"
),
param_Boolean(
id = "verbose",
default = TRUE,
description = "Logical. Whether to print progress messages.",
function_name = c("zinbEstimate", "zinbSimulate")
),
param_others(
id = "BPPARAM",
default = "SerialParam()",
type = "SerialParam",
description = " A BiocParallelParam instance giving the parallel back-end to be used. Default is SerialParam which uses a single core.",
function_name = "zinbEstimate"
),
param_others(
id = "params",
type = "ZINBParams",
default = "ZINBParams()",
description = "ZINBParams object containing simulation parameters.",
function_name = "zinbSimulate"
),
param_Boolean(
id = "sparsify",
default = TRUE,
description = "logical. Whether to automatically convert assays to sparse matrices if there will be a size reduction."
)
)
zinbwave_method <- method_definition(
method = "zinbwave",
programming = "R",
url = "http://www.bioconductor.org/packages/release/bioc/html/zinbwave.html",
authors = authors_definition(
first = "Davide",
last = "Risso",
email = NULL,
github = "https://github.com/drisso/zinbwave",
orcid = NULL
),
manuscript = manuscript_definition(
title = "A general and flexible method for signal extraction from single-cell RNA-seq data",
doi = "10.1038/s41467-017-02554-5",
journal = "Nature Communications",
date = "2018",
peer_review = TRUE
),
description = "Implements a general and flexible zero-inflated negative binomial model that can be used to provide a low-dimensional representations of single-cell RNA-seq data. The model accounts for zero inflation (dropouts), over-dispersion, and the count nature of the data. The model also accounts for the difference in library sizes and optionally for batch effects and/or other covariates, avoiding the need for pre-normalize the data.",
vignette = "http://47.254.148.113/software/Simsite/references/methods/14-zinbwave/")
list(zinbwave_method = zinbwave_method,
zinbwave_parameters = zinbwave_parameters)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.