#' Get Information of zingeR
#'
#' @param ... ...
#'
#' @return A list contains the information of method and default parameters
#' @import simutils
#' @importFrom splatter newSimpleParams
#' @export
#'
#' @examples
#' zingeR_method_definition <- zingeR_method_definition()
zingeR_method_definition <- function(...){
zingeR_parameters <- parameter_sets(
param_reference(
id = "counts",
type = c("matrix"),
default = NULL,
force = TRUE,
process = "estimation",
description = "A numeric matrix containing gene expression counts. Note that every gene in this matrix must have at least $p+1$ positive counts, with $p$ the number of columns in the design matrix.",
function_name = "getDatasetZTNB"
),
param_others(
id = "design",
type = "matrix",
default = NULL,
force = TRUE,
process = "estimation",
description = "The design of the experiments with rows corresponding to samples and columns corresponding to coefficients.",
function_name = "getDatasetZTNB"
),
param_others(
id = "drop.extreme.dispersion",
type = c("numeric", "Boolean"),
default = FALSE,
process = "estimation",
description = "Either a numeric value between $0$ and $1$, stating the proportion of genes with extreme (high) dispersions to remove for simulation, or FALSE (default), if no dispersions should be removed for the analysis.",
function_name = c("getDatasetZTNB", "NBsimSingleCell")
),
param_others(
id = "offset",
type = "numeric",
default = NULL,
description = "The offset to use (typically the sequencing depth) when estimating gene-wise means and dispersions in the zero-truncated negative binomial model. These parameters will be used as a basis for the simulation.",
function_name = "getDatasetZTNB"
),
param_reference(
id = "dataset",
type = "matrix",
force = TRUE,
description = "An expression matrix representing the dataset on which the simulation is based.",
function_name = "NBsimSingleCell"
),
param_vector(
id = "group",
force = TRUE,
description = "Group indicator specifying the attribution of the samples to the different conditions of interest that are being simulated.",
function_name = "NBsimSingleCell"
),
param_integer(
id = "nTags",
default = 10000L,
lower = 1,
description = "The number of features (genes) to simulate. $1000$ by default",
function_name = "NBsimSingleCell"
),
param_others(
id = "nlibs",
default = "length(group)",
type = "integer",
description = "The number of samples to simulate. Defaults to length(group).",
function_name = "NBsimSingleCell"
),
param_others(
id = "lib.size",
type = "numeric",
description = "The library sizes for the simulated samples. If NULL (default), library sizes are resampled from the original datset.",
function_name = "NBsimSingleCell"
),
param_numeric(
id = "pUp",
default = 0.5,
lower = 0,
upper = 1,
description = "Numeric value between $0$ and $1$ ($0.5$ by default) specifying the proportion of differentially expressed genes that show an upregulation in the second condition.",
function_name = "NBsimSingleCell"
),
param_numeric(
id = "foldDiff",
default = 2,
description = "The fold changes used in simulating the differentially expressed genes. Either one numeric value for specifying the same fold change for all DE genes, or a vector of the same length as ind to specify fold changes for all differentially expressed genes. Note that fold changes above $1$ should be used as input of which a fraction will be inversed (i.e. simulation downregulation) according to 'pUp'. Defaults to $3$.",
function_name = "NBsimSingleCell"
),
param_Boolean(
id = "verbose",
default = TRUE,
description = "Logical, stating whether progress be printed.",
function_name = "NBsimSingleCell"
),
param_vector(
id = "ind",
description = "Integer vector specifying the rows of the count matrix that represent differential features.",
function_name = "NBsimSingleCell"
),
param_others(
id = "params",
type = "created by getDatasetZTNB",
description = "An object containing feature-wise parameters used for simulation as created by getDatasetZTNB. If NULL, parameters are estimated from the dataset provided.",
function_name = "NBsimSingleCell"
),
param_numeric(
id = "randomZero",
default = 0,
upper = 1,
lower = 0,
description = "A numeric value between $0$ and $1$ specifying the random fraction of cells that are set to zero after simulating the expression count matrix. Defaults to $0$.",
function_name = "NBsimSingleCell"
),
param_numeric(
id = "min.dispersion",
default = 0.1,
lower = 0,
description = "The minimum dispersion value to use for simulation. $0.1$ by default.",
function_name = "NBsimSingleCell"
),
param_numeric(
id = "max.dipserion",
default = 400,
lower = 0,
description = "The maximum dispersion value to use for simulation. $400$ by default.",
function_name = "NBsimSingleCell"
)
)
zingeR_method <- method_definition(
method = "zingeR",
programming = "R",
url = "https://github.com/statOmics/zingeR",
authors = authors_definition(
first = "Koen",
last = "Van den Berge",
email = "Koen.VanDenBerge@UGent.be",
github = "https://github.com/statOmics/zingeR",
orcid = "0000-0003-2214-0947"
),
manuscript = manuscript_definition(
title = "Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications",
doi = "10.1186/s13059-018-1406-4",
journal = "Genome Biology",
date = "2018",
peer_review = TRUE
),
description = "Zero-inflated negative binomial gene expression in R.",
vignette = "http://47.254.148.113/software/Simsite/references/methods/15-zinger/")
list(zingeR_method = zingeR_method,
zingeR_parameters = zingeR_parameters)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.