############# .merMod -----------------
#' @export
model_parameters.merMod <- function(model,
ci = 0.95,
ci_method = NULL,
ci_random = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
effects = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
vcov = NULL,
vcov_args = NULL,
wb_component = FALSE,
include_info = getOption("parameters_mixed_info", FALSE),
include_sigma = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...) {
insight::check_if_installed("lme4")
dots <- list(...)
# set default
if (is.null(ci_method)) {
if (isTRUE(bootstrap)) {
ci_method <- "quantile"
} else {
ci_method <- switch(insight::find_statistic(model),
`t-statistic` = "residual",
"wald"
)
}
}
# p-values, CI and se might be based of wald, or KR
ci_method <- tolower(ci_method)
if (isTRUE(bootstrap)) {
ci_method <- insight::validate_argument(
ci_method,
c("hdi", "quantile", "ci", "eti", "si", "bci", "bcai")
)
} else {
ci_method <- insight::validate_argument(
ci_method,
c(
"wald", "normal", "residual", "ml1", "betwithin", "satterthwaite",
"kenward", "kr", "boot", "profile", "uniroot"
)
)
}
# which component to return?
effects <- insight::validate_argument(
effects,
c("fixed", "random", "grouplevel", "total", "random_total", "all")
)
params <- NULL
# group level estimates =================================================
# =======================================================================
# for coef(), we don't need all the attributes and just stop here
if (effects %in% c("total", "random_total")) {
params <- .group_level_total(model)
params$Effects <- "total"
class(params) <- c("parameters_coef", "see_parameters_coef", class(params))
return(params)
}
# group grouplevel estimates (BLUPs), handle alias
if (effects == "grouplevel") {
effects <- "random"
group_level <- TRUE
}
# post hoc standardize only works for fixed effects...
if (!is.null(standardize) && standardize != "refit") {
if (!missing(effects) && effects != "fixed" && verbose) {
insight::format_alert(
"Standardizing coefficients only works for fixed effects of the mixed model."
)
}
effects <- "fixed"
}
# for refit, we completely refit the model, than extract parameters,
# ci etc. as usual - therefor, we set "standardize" to NULL
if (!is.null(standardize) && standardize == "refit") {
model <- datawizard::standardize(model, verbose = FALSE)
standardize <- NULL
}
# fixed effects =================================================
# ===============================================================
if (effects %in% c("fixed", "all")) {
# Processing
if (bootstrap) {
params <- bootstrap_parameters(
model,
iterations = iterations,
ci = ci,
...
)
if (effects != "fixed") {
effects <- "fixed"
if (verbose) {
insight::format_alert("Bootstrapping only returns fixed effects of the mixed model.")
}
}
} else {
fun_args <- list(
model,
ci = ci,
ci_method = ci_method,
standardize = standardize,
p_adjust = p_adjust,
wb_component = wb_component,
keep_parameters = keep,
drop_parameters = drop,
verbose = verbose,
include_sigma = include_sigma,
include_info = include_info,
vcov = vcov,
vcov_args = vcov_args
)
fun_args <- c(fun_args, dots)
params <- do.call(".extract_parameters_mixed", fun_args)
}
params$Effects <- "fixed"
# exponentiate coefficients and SE/CI, if requested
params <- .exponentiate_parameters(params, model, exponentiate)
}
att <- attributes(params)
# add random effects, either group level or re variances
# ======================================================
params <- .add_random_effects_lme4(
model,
params,
ci,
ci_method,
ci_random,
effects,
group_level,
verbose
)
# clean-up
# ======================================================
# remove empty column
if (!is.null(params$Level) && all(is.na(params$Level))) {
params$Level <- NULL
}
# due to rbind(), we lose attributes from "extract_parameters()",
# so we add those attributes back here...
if (!is.null(att)) {
attributes(params) <- utils::modifyList(att, attributes(params))
}
params <- .add_model_parameters_attributes(
params,
model,
ci = ci,
exponentiate,
bootstrap,
iterations,
ci_method = ci_method,
p_adjust = p_adjust,
verbose = verbose,
include_info = include_info,
group_level = group_level,
wb_component = wb_component,
...
)
attr(params, "object_name") <- insight::safe_deparse_symbol(substitute(model))
class(params) <- c("parameters_model", "see_parameters_model", class(params))
params
}
# helper ----------------------------------------------------------------------
.add_random_effects_lme4 <- function(model,
params,
ci,
ci_method,
ci_random,
effects,
group_level,
verbose = TRUE,
...) {
params_random <- params_variance <- NULL
# only proceed if random effects are requested
if (effects %in% c("random", "all")) {
# group level estimates (BLUPs) or random effects variances?
if (isTRUE(group_level)) {
params_random <- .extract_random_parameters(model, ci = ci, effects = effects)
} else {
params_variance <- .extract_random_variances(
model,
ci = ci,
effects = effects,
ci_method = ci_method,
ci_random = ci_random,
verbose = verbose
)
}
# merge random and fixed effects, if necessary
if (!is.null(params) && (!is.null(params_random) || !is.null(params_variance))) {
params$Level <- NA
params$Group <- ""
if (is.null(params_random)) {
params <- params[match(colnames(params_variance), colnames(params))]
} else {
params <- params[match(colnames(params_random), colnames(params))]
}
}
}
rbind(params, params_random, params_variance)
}
#' @export
ci.merMod <- function(x,
ci = 0.95,
dof = NULL,
method = "wald",
iterations = 500,
...) {
method <- tolower(method)
method <- insight::validate_argument(method, c(
"wald", "ml1", "betwithin", "kr",
"satterthwaite", "kenward", "boot",
"profile", "residual", "normal"
))
# bootstrapping
if (method == "boot") {
out <- lapply(ci, function(ci, x) .ci_boot_merMod(x, ci, iterations, ...), x = x)
out <- do.call(rbind, out)
row.names(out) <- NULL
# profiled CIs
} else if (method == "profile") {
pp <- suppressWarnings(stats::profile(x, which = "beta_"))
out <- lapply(ci, function(i) .ci_profile_merMod(x, ci = i, profiled = pp, ...))
out <- do.call(rbind, out)
# all others
} else {
out <- .ci_generic(model = x, ci = ci, dof = dof, method = method, ...)
}
out
}
#' @export
standard_error.merMod <- function(model,
effects = "fixed",
method = NULL,
vcov = NULL,
vcov_args = NULL,
...) {
dots <- list(...)
effects <- insight::validate_argument(effects, c("fixed", "random"))
if (effects == "random") {
out <- .standard_errors_random(model)
return(out)
}
if (is.null(method)) {
method <- "wald"
} else if ((method == "robust" && is.null(vcov)) ||
# deprecated argument
isTRUE(list(...)[["robust"]])) {
vcov <- "vcovHC"
}
if (!is.null(vcov) || isTRUE(dots[["robust"]])) {
fun_args <- list(model,
vcov = vcov,
vcov_args = vcov_args
)
fun_args <- c(fun_args, dots)
out <- do.call("standard_error.default", fun_args)
return(out)
}
# kenward approx
if (method %in% c("kenward", "kr")) {
out <- se_kenward(model)
return(out)
} else {
# Classic and Satterthwaite SE
out <- se_mixed_default(model)
return(out)
}
}
# helpers --------------
.standard_errors_random <- function(model) {
insight::check_if_installed("lme4")
rand.se <- lme4::ranef(model, condVar = TRUE)
n.groupings <- length(rand.se)
for (m in 1:n.groupings) {
vars.m <- attr(rand.se[[m]], "postVar")
K <- dim(vars.m)[1]
J <- dim(vars.m)[3]
names.full <- dimnames(rand.se[[m]])
rand.se[[m]] <- array(NA, c(J, K))
for (j in 1:J) {
rand.se[[m]][j, ] <- sqrt(diag(as.matrix(vars.m[, , j])))
}
dimnames(rand.se[[m]]) <- list(names.full[[1]], names.full[[2]])
}
rand.se
}
se_mixed_default <- function(model) {
params <- insight::find_parameters(model,
effects = "fixed",
component = "conditional",
flatten = TRUE
)
.data_frame(Parameter = params, SE = .get_se_from_summary(model))
}
#' @export
p_value.merMod <- p_value.cpglmm
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.