#######################################
### Worflow functions ###
### for EcoservR ###
### Sandra Angers-Blondin ###
### 26 October 2020 ###
#######################################
#' Add terrain data
#'
#' This function adds terrain data (elevation) to the basemap. Data input can be one or several rasters of tif or asc format.
#' @param mm The mm object loaded in the environment, can be at various stages of updating.
#' @param studyAreaBuffer The buffered study area generated during mod01 or reloaded when resuming a session.
#' @param projectLog The RDS project log file generated by the wizard app and containing all file paths to data inputs and model parameters
#' @return Saves a project_title_MM_08.RDS file to project folder
#' @export
add_DTM <- function(mm = parent.frame()$mm,
studyAreaBuffer = parent.frame()$studyAreaBuffer,
projectLog = parent.frame()$projectLog){
timeA <- Sys.time() # start time
## Extract the file paths and other info from project log ----------------------
output_temp <- projectLog$output_temp
title <- projectLog$title
scratch_path <- file.path(output_temp, "ecoservR_scratch")
if (!dir.exists(scratch_path)) dir.create(scratch_path)
# Get path
terrainpath <- projectLog$df[projectLog$df$dataset == "terrain", ][["path"]] # path to corine data, if available
if (!is.na(terrainpath) & !is.null(terrainpath)){
message("Preparing to update baseline with DTM data...")
# DATA IMPORT ---------------------------------------------------------------------------------
# Check all files at specified path
dtm <- list.files(terrainpath, # folder with DTM tiles
pattern = paste(c(".asc$", ".tif$"),collapse="|"), # find all tif or asc files
ignore.case = TRUE, # sometimes extensions are all caps
all.files=TRUE, full.names=TRUE,
recursive = TRUE)
# Read in the dtm tiles
dtm <- lapply(dtm, function(x) raster::raster(x))
## If no projection set, flash a warning and assign OSGB1936
if (any(unlist(lapply(dtm, function(x) is.na(raster::crs(x)))))){
message("Warning! No projection set for your DTM so we will assume it is OSGB 1936 (British National Grid).")
dtm <- lapply(dtm, function(x){
suppressWarnings({
raster::crs(x) <- sp::CRS(SRS_string = "EPSG:27700")
return(x)
})
})
}
# if (is.na(raster::crs(dtm[[1]]))){
#
# message("Warning! No projection set for your DTM so we will assume it is OSGB 1936 (British National Grid).")
#
#
# dtm <- lapply(dtm, function(x){
# suppressWarnings({
# raster::crs(x) <- sp::CRS(SRS_string = "EPSG:27700")
# return(x)
# })
# })
#
# }
# Calculate side of square (assuming projection is in meters)
span <- dim(dtm[[1]])[[1]]*raster::res(dtm[[1]])[[1]]
# TILE IF NEEDED ------------------------------------------------------------------------------
## If there is only one raster, we tile using OS grid to match grid ref of mm:
if (length(dtm) == 1){
# we can call the object "grid" directly
gridSA <- suppressWarnings(sf::st_intersection(sf::st_set_crs(ecoservR:::grid, 27700), studyAreaBuffer)) # create gridded study area
gridSA$TILE_NAME <- droplevels(gridSA$TILE_NAME) # drop squares that are not in the study area
gridSA <- gridSA[gridSA$TILE_NAME %in% names(mm),] # make sure that tiles will be matched to existing mm tiles
dtm_tiles <- vector("list", length = nrow(gridSA)) # create empty list that we will fill with tiles
names(dtm_tiles) <- gridSA$TILE_NAME
# Create the dtm tiles for each 10x10km square in study area, and save to temporary folder defined previously
for (i in 1:length(dtm_tiles)){
suppressWarnings({ # make sure extents overlap before forcing a clip, otherwise errors
if (lengths(
sf::st_intersects(gridSA[gridSA$TILE_NAME == names(dtm_tiles)[[i]], ],
sf::st_set_crs(sf::st_as_sf(sf::st_as_sfc(sf::st_bbox(dtm[[1]]))), 27700)
)) == 0) {next}
})
## wrapping in writeraster rather than using filename= in crop due to bug with dataType FLT4S
dtm_tiles[[i]] <- raster::writeRaster(
raster::crop(dtm[[1]], gridSA[gridSA$TILE_NAME == names(dtm_tiles)[[i]],]),
filename = file.path(scratch_path, paste("dtm_tile", i, sep = "")),
overwrite = TRUE)
}
dtm <- dtm_tiles
rm(dtm_tiles)
} else if (span < 10000){
# If we imported tiles and they are smaller than 10x10 km, we take their center point and place it within a 10km grid ref, and assign the grid ref as name
rcentro <- lapply(dtm, function(x) raster_centroid(x)) # find centroid (spatial point)
rcentro <- do.call(rbind, rcentro) # make into sf df
# index which grid tiles each raster belongs to (several rasters will belong to one tile)
rtiles <- sf::st_intersects(rcentro, sf::st_set_crs(ecoservR:::grid, 27700))
# add the 10km grid ref as names to the rasters
# This could crash if a rcentro point is exactly across two tiles, but shouldn't be if dtm from any reputable source
names(dtm) <- ecoservR:::grid[unlist(rtiles),]$TILE_NAME
} else if (span > 10000){
# if imported tiles are larger than a 10km tile (unlikely), we just use the old extraction
# setting names to null ensures that the tile matching workflow fails and reverts to slower extraction
names(dtm) <- NULL
}
# EXTRACTION ----------------------------------------------------------------------------------
message("Extracting DTM data...")
## If we managed to assign names to the dtm tiles, extraction will be one-to-one (merging smaller dtm tiles first if needed)
mm <- mapply(function(x, n) extractRaster(x, dtm, fun = "mean", tile = n, newcol = "elev"),
x = mm,
n = names(mm), # passing the names of the tiles will allow to select corresponding raster, making function faster. If user is not working with named tiles, will be read as null and the old function will kick in (slower but works)
SIMPLIFY = FALSE) # absolutely necessary
# SLOPES ------------------------------------------------------------------
message("Calculating slopes...")
# Calculate slopes from the DTM; they automatically keep their name
slopes <- lapply(dtm, function(x) raster::terrain(x, opt = "slope", unit = "degrees"))
rm(dtm)
message("Extracting slopes...")
# Extract into map
mm <- mapply(function(x, n) extractRaster(x, slopes, fun = "mean", tile = n, newcol = "slope"),
x = mm,
n = names(mm), # passing the names of the tiles will allow to select corresponding raster, making function faster. If user is not working with named tiles, will be read as null and the old function will kick in (slower but works)
SIMPLIFY = FALSE) # absolutely necessary
rm(slopes)
# SAVE UPDATED MASTER MAP ---------------------------------------------------------------------
saveRDS(mm, file.path(output_temp, paste0(title,"_MM_08.RDS")))
# Update the project log with the information that map was updated
projectLog$last_success <- "MM_08.RDS"
timeB <- Sys.time() # stop time
# add performance to log
projectLog$performance[["add_DTM"]] <- as.numeric(difftime(
timeB, timeA, units="mins"
))
updateProjectLog(projectLog) # save revised log
# and delete contents of scratch folder
cleanUp(scratch_path)
message(paste0("Finished updating with elevation data. Process took ",
round(difftime(timeB, timeA, units = "mins"), digits = 1),
" minutes."))
} else {message("No elevation data input specified.")} # end of running condition
# Return mm to environment, whether it has been updated or not.
return({
invisible({
mm <<- mm
projectLog <<- projectLog
})
})
} # end of function
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.