# Plots ----
## home page -----
# image2 sends pre-rendered images
output$homepage <- renderImage({
return(list(
src = "images/HISTA_Figs_v2.png",
filetype = "image/png",
alt = "Tutorial"
))
}, deleteFile = FALSE)
## CellScoreOrderSDA -----
output$CellScoreOrderSDA <- renderPlot({
Scores <- ComboTopSDAgenes_Rx()$Scores
Meta <- ComboTopSDAgenes_Rx()$Meta
# print(head(Scores[,as.numeric(input$ComponentNtext2)]))
SC_SDA_ScoreDF <- data.frame(Score=Scores[,as.numeric(input$ComponentNtext2)],
Rank=rank(Scores[,as.numeric(input$ComponentNtext2)]))
# print(head(SC_SDA_ScoreDF))
# print(head(Meta))
SC_SDA_ScoreDF$Meta <- Meta #datat$experiment2[rownames(Scores)]
cowplot::plot_grid(ggplot(SC_SDA_ScoreDF ,
aes(x = Score, y = Rank, colour = Meta)) +
geom_point(alpha=.2) +
ggtitle(paste0("Cells ordered by SDA Scores in SDA", input$ComponentNtext2)) +
xlab(paste0("Score : SDA", input$ComponentNtext2)) +
ylab(paste0("Rank : SDA", input$ComponentNtext2)) +
theme_classic(base_size = 10) + scale_color_manual(values=col_vector) +
theme(legend.position="below",
legend.direction="horizontal",
legend.title = element_blank(),
axis.text.x = element_text(angle = 90)),
ggplot(SC_SDA_ScoreDF,
aes(x = Score,
y = Meta,
colour = Meta)) +
ggbeeswarm::geom_quasirandom(groupOnX = FALSE) +
xlab(paste0("Score : SDA", input$ComponentNtext2)) +
ylab("Categ.") +
theme_classic(base_size = 10) + scale_color_manual(values=col_vector) +
theme(legend.position="bottom",
legend.direction="horizontal",
legend.title = element_blank(),
axis.text.x = element_text(angle = 90)),
ncol=1)
})
## PseudotimeSDAgene -----
output$PseudotimeSDAgeneMeta <- renderPlot({
PseudotimeSDA_geneMeta_Rx()
})
## PseudotimeSDAgene -----
output$PseudotimeSDAgene <- renderPlot({
PseudotimeSDA_gene_Rx()
})
## PseudotimeSDA -----
output$PseudotimeSDA <- renderPlot({
# tempDF <- PseudotimeGeneral_RX()
#
# merge_sda_melt <- reshape2::melt(tempDF, id.vars = c("barcode","tSNE1", "tSNE2", "GeneExpr", "MetFacZ", "PT"))
#
# print("melted table")
#
# # print(head(rownames(tempDF)))
# # print(head(rownames(Scores)))
#
# # tempDF <- tempDF[!is.na(tempDF$tSNE1),]
# # Scores <-Scores[rownames(tempDF),]
# # print(head(merge_sda_melt))
# # plot(merge_sda_melt$PT,
# # merge_sda_melt$value)
#
#
#
# ggpp = ggplot(merge_sda_melt, aes(PT, value, colour=(MetFacZ))) +
# geom_point(alpha=1, size=.2) +
# geom_smooth(method = lm, formula = y ~ splines::bs(x, 50), se = FALSE) +
# # stat_smooth(aes(PT, value), size=1, alpha = 0.6, method = "gam", formula = y ~ s(x, k = 20), se = F) +#colour="black",
# ylab("Cell Component Score") +
# xlab("Pseudotime") +
# # ggtitle(paste0("SDA Comp: ", as.numeric(input$ComponentNtext3)))+
# theme_classic(base_size = 10) +
# theme(legend.position = "none") +
# ylim(-8,8)
#
# print("ggpp made")
#
# if(input$metaselect_pseudo == "pseudotime") {
# ggpp = ggpp + scale_color_viridis()
# } else {
# ggpp = ggpp + scale_colour_manual(values=col_vector) + facet_wrap(~MetFacZ,
# ncol=3,
# scales = "fixed")
# }
#
# print("color type corrected")
#
# ggpp
PseudotimeSDA_Rx()
})
## SDAScoresChiPos -----
output$SDAScoresChiPos <- renderPlot({
tempLS <- SDAScoresChiPos_Rx()
pheatmap::pheatmap(tempLS$obj,
cluster_cols = tempLS$clustStat, cluster_rows = tempLS$clustStat,
color = colorRampPalette(rev(brewer.pal(n = 7, name ="RdBu")))(10),
labels_col = tempLS$label_col)
})
## SDAScoresChiNeg -----
output$SDAScoresChiNeg <- renderPlot({
tempLS <- SDAScoresChiNeg_Rx()
pheatmap::pheatmap(tempLS$obj,
cluster_cols = tempLS$clustStat, cluster_rows = tempLS$clustStat,
color = colorRampPalette(rev(brewer.pal(n = 7, name ="RdBu")))(10),
labels_col = tempLS$label_col)
})
## celltypes_SDAperCT_box -----
output$celltypes_SDAperCT_box <- renderPlot({
celltypes_SDAperCT_box_Rx()
})
## geneExprPerCond_box -----
output$geneExprPerCond_box <- renderPlot({
geneExprPerCond_box_Rx()
})
## geneExprPerCT_box -----
output$geneExprPerCT_box <- renderPlot({
geneExprPerCT_box_Rx()
})
## packageTablePos -----
output$packageTablePos <- renderTable({
print_gene_list(as.numeric(input$ComponentNtext), PosOnly = T) %>%
#group_by(package) %>%
#tally() %>%
#arrange(desc(n), tolower(package)) %>%
#mutate(percentage = n / nrow(pkgData()) * 100) %>%
#select("Package name" = package, "% of downloads" = percentage) %>%
as.data.frame() %>%
head(as.numeric(input$NoOfGenes))
}, digits = 1)
## packageTableNeg -----
output$packageTableNeg <- renderTable({
print_gene_list(as.numeric(input$ComponentNtext), NegOnly = T) %>%
#group_by(package) %>%
#tally() %>%
#arrange(desc(n), tolower(package)) %>%
#mutate(percentage = n / nrow(pkgData()) * 100) %>%
#select("Package name" = package, "% of downloads" = percentage) %>%
as.data.frame() %>%
head(as.numeric(input$NoOfGenes))
}, digits = 1)
## tSNEwSDAScoreProj -----
output$tSNEwSDAScoreProj <- renderPlot({
tSNEwSDAScoreProj_Rx()
})
## DimReduxCT -----
output$DimReduxCT2D <- renderPlot({
tSNEwSDAScoreProjPerCT_Rx()
})
## DimReduxCT_GEX -----
output$DimReduxCT_GEX <- renderPlot({
tSNEwSDAScoreProjPerCT_GEX_Rx()
})
## tSNEwMetaLegend -----
output$tSNEwMetaLegend <- renderPlot({
legend <- cowplot::get_legend(tSNEwMeta_Rx())
#grid.newpage()
grid.draw(legend)
})
## tSNEwMeta -----
#renderPlotly
output$tSNEwMeta <- renderPlot({
tSNEwMeta_Rx()+
theme(legend.position = "none", aspect.ratio=1,
legend.title = element_blank())
})
## tSNE_geneExpr -----
output$tSNE_geneExpr <- renderPlot({
tSNE_geneExpr_Rx()
})
## DimReduxCT_meta -----
output$DimReduxCT_meta2D <- renderPlot({
tSNEwMetaPerCT_Rx()
})
# output$tSNE_somaWLN <- renderPlot({
# cowplot::plot_grid(tSNE_somaWLN_Pheno3_Rx(),
# tSNE_somaWLN_COND.ID_Rx(),
# tSNE_somaWLN_DONR.ID_Rx(),
# tSNE_somaWLN_nCount_RNA_Rx(),
# ncol=2)
# })
## tSNEPseudoSDA -----
output$tSNEPseudoSDA <- renderPlot({
tempDF <- PseudotimeGeneral_RX()
#
# tempDF <- tSNE_GermCells_DF_Rx()
#
# if(input$metaselect_pseudo == "pseudotime") {
# MetaFac <- datat$PseudoTime
# } else{
#
# if(input$metaselect_pseudo == "celltype") {
# MetaFac <- (datat$FinalFinalPheno_old)
# } else {
# if(input$metaselect_pseudo == "donrep"){
# MetaFac <- (datat$DonRep)
# } else {
# if(input$metaselect_pseudo == "donor"){
# MetaFac <- (datat$donor)
# } else {
# if(input$metaselect_pseudo == "COND.ID"){
# MetaFac <- (datat$COND.ID)
# } else {
# if(input$metaselect_pseudo == "experiment"){
# MetaFac <- (datat$experiment)
# } else {
#
# }
# }
# }
# }
# }
#
# }
#
#
# tempDF$MetFacZ <- MetaFac
#
# tempDF <- tempDF[!is.na(tempDF$tSNE1),]
#
# #reduce memory
# tempDF = tempDF[sample(1:nrow(tempDF), 500, replace = F), ]
if(input$metaselect_pseudo == "pseudotime") {
ggplot(tempDF, aes(tSNE1, tSNE2, color=MetFacZ)) +
geom_point(size=0.1) + theme_classic(base_size = 10) +
scale_color_viridis() +
theme(legend.position = "bottom", aspect.ratio=1,
legend.title = element_blank()) +
ggtitle("SDA t-SNE - cells coloured by PseudoTime") +
coord_cartesian(xlim = NULL, ylim = NULL, expand = FALSE)
} else {
#ggplotly
ggplot(tempDF, aes(tSNE1, tSNE2, color=factor(as.character(MetFacZ)))) +
geom_point(size=0.1)+ theme_classic(base_size = 10) +
theme(legend.position = "bottom", aspect.ratio=1,
legend.title = element_blank()) +
ggtitle("Germ-cell Only t-SNE") +
scale_color_manual(values=(col_vector)) +
guides(colour = guide_legend(override.aes = list(size=2, alpha=1), nrow =3)) +
coord_cartesian(xlim = NULL, ylim = NULL, expand = FALSE)
}
})
## GO enrichment plots ------
output$GOpos <- renderPlot({
SDAGOpos_Rx()
})
output$GOneg <- renderPlot({
SDAGOneg_Rx()
})
## chrom loading location -----
output$ChrLoc <- renderPlot({
ChrLocLoadings_Rx()
})
## SDA scpres across ------
output$SDAScoresAcross <- renderPlot({
SDAScoresAcross_Rx()
})
## Enrichment ------
## packageTablePos -----
output$PosEnrichPlot <- renderPlot({
# N = total number of genes (usually not entire genome, since many have unk func)
N=8025
# k = number of genes submitted, top 100
k = 150 #100
GeneSet <- input$GeneSet
if(length(grep(",", GeneSet)) == 0){
if(length(grep('"', GeneSet)) + length(grep("'", GeneSet))>0) {
GeneSet <- unlist(strsplit(gsub("'", '', gsub('"', '', GeneSet)), " "))
} else {
GeneSet <- unlist(strsplit(GeneSet, " "))
}
#print(GeneSet)
}else {
GeneSet <- (unlist(strsplit(gsub(" ", "", gsub("'", '', gsub('"', '', GeneSet))), ",")))
#print(GeneSet)
}
GeneSetNot <- GeneSet[!GeneSet %in% colnames(results$loadings[[1]][,])]
print("length of your genes:")
print(length(GeneSet))
GeneSet <- GeneSet[GeneSet %in% colnames(results$loadings[[1]][,])]
print("length of your genes in this dataset:")
print(length(GeneSet))
# print("length of your genes in this dataset:")
# print(length(GeneSet))
plotEnrich(GeneSetsDF=SDA_Top100pos,
GeneVec = GeneSet,
plotTitle= paste0("Gene-set enrichment\n SDA top 150 pos loadings\n Cust. Input. genes \n Hypergeometric test: * adj.p < 0.01 \n Genes not found: ",
paste0(GeneSetNot, collapse = ", ")),
xLab = "SDA Comps",
N=N,
k=k)
})
## packageTableNeg -----
output$NegEnrichPlot <- renderPlot({
# N = total number of genes (usually not entire genome, since many have unk func)
N=8025
# k = number of genes submitted, top 100
k = 150 #100
GeneSet <- input$GeneSet
#GeneSet <- "'PRM1', 'SPATA42', 'SPRR4', 'NUPR2', 'HBZ', 'DYNLL2'"
if(length(grep(",", GeneSet)) == 0){
if(length(grep('"', GeneSet)) + length(grep("'", GeneSet))>0) {
GeneSet <- unlist(strsplit(gsub("'", '', gsub('"', '', GeneSet)), " "))
} else {
GeneSet <- unlist(strsplit(GeneSet, " "))
}
#print(GeneSet)
}else {
GeneSet <- (unlist(strsplit(gsub(" ", "", gsub("'", '', gsub('"', '', GeneSet))), ",")))
#print(GeneSet)
}
# print("length of your genes:")
# print(length(GeneSet))
GeneSetNot <- GeneSet[!GeneSet %in% colnames(results$loadings[[1]][,])]
GeneSet <- GeneSet[GeneSet %in% colnames(results$loadings[[1]][,])]
# print("length of your genes in this dataset:")
# print(length(GeneSet))
plotEnrich(GeneSetsDF=SDA_Top100neg,
GeneVec = GeneSet,
plotTitle= paste0("Gene-set enrichment\n SDA top 150 neg loadings\n Cust. Input. genes \n Hypergeometric test: * adj.p < 0.01 \n Genes not found: ",
paste0(GeneSetNot, collapse = ", ")),
xLab = "SDA Comps",
N=N,
k=k)
})
# lncRNAs -----
# output$lncRNA_temp <- renderPlot({
#
# })
# output$lncRNA_topLoaded <- renderPlot({
#
# lncLS$PosLoaded_top
#
# })
# lncRNA_Venn -----
output$lncRNA_Venn <- renderPlot({
ggvenn::ggvenn(list(Ensembl_lncRNA = unique(lincrna$hgnc_symbol), HISTA = colnames(results$loadings[[1]])))
})
# lncRNA_BarplotSDA -----
output$lncRNA_BarplotSDA <- renderPlot({
dfm = reshape2::melt(cbind(lncLS$DF, SDAannotation[rownames(lncLS$DF),c("Component.ID", "Pathology", "Cell.Type")]),
id.var=c("comp", "Component.ID", "Pathology", "Cell.Type"))
dfm$sig = ifelse(sigComps, "Sig", "NotSig")
# ggplot(data=dfm, aes(x=reorder(comp, -value), y=value, fill=sig)) +
# geom_bar(stat="identity", position=position_dodge()) + ggthemes::theme_base() +
# # guides(col = guide_legend(nrow = 2, byrow = TRUE, override.aes = list(size = 2))) +
# theme(legend.position = "bottom",
# # axis.line=element_blank(),
# axis.text.x=element_text(angle = 45, vjust = 1, hjust=1),
# #axis.text.y=element_blank(),
# #axis.ticks=element_blank(),
# axis.title.x=element_blank(),
# axis.title.y=element_blank(),
# panel.background=element_blank(),
# # panel.border=element_blank(),
# panel.grid.major=element_blank(),
# panel.grid.minor=element_blank(),
# plot.background=element_blank()) +
# ggtitle("No of lncRNA genes (N=1348) in top 200 loaded genes") + facet_wrap(~variable, nrow = 2) +
# geom_hline(yintercept= 22.3, color="black", linetype="dashed", size=.5)
# ggplot(data=subset(dfm, sig == "Sig"), aes(x=reorder(comp, -value), y=value, fill=value)) +
# geom_bar(stat="identity", position=position_dodge()) + ggthemes::theme_base() +
# # guides(col = guide_legend(nrow = 2, byrow = TRUE, override.aes = list(size = 2))) +
# theme(legend.position = "bottom",
# # axis.line=element_blank(),
# axis.text.x=element_text(angle = 45, vjust = 1, hjust=1),
# #axis.text.y=element_blank(),
# #axis.ticks=element_blank(),
# axis.title.x=element_blank(),
# axis.title.y=element_blank(),
# panel.background=element_blank(),
# # panel.border=element_blank(),
# panel.grid.major=element_blank(),
# panel.grid.minor=element_blank(),
# plot.background=element_blank()) +
# ggtitle("No of lncRNA genes (N=1348) in top 200 loaded genes\nComps > mean+3sd Only") + facet_wrap(~variable, nrow = 2) +
# geom_hline(yintercept= 22.3, color="black", linetype="dashed", size=.5)
#
ggplot(data=subset(dfm, Pathology !="Removed"), aes(x=reorder(comp, -value), y=value, fill=Cell.Type)) +
geom_bar(stat="identity", position=position_dodge()) + ggthemes::theme_base() +
# guides(col = guide_legend(nrow = 2, byrow = TRUE, override.aes = list(size = 2))) +
theme(legend.position = "bottom",
# axis.line=element_blank(),
axis.text.x=element_text(angle = 45, vjust = 1, hjust=1),
#axis.text.y=element_blank(),
#axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank(),
panel.background=element_blank(),
# panel.border=element_blank(),
panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),
plot.background=element_blank()) +
ggtitle("No of lncRNA genes (N=1348) in top 200 loaded genes\nComps that passed QC") + facet_wrap(~variable, nrow = 2) +
geom_hline(yintercept= 22.3, color="black", linetype="dashed", size=.5)+
geom_hline(yintercept= 18, color="black", linetype="dotted", size=.5)+
geom_hline(yintercept= 12.1, color="black", linetype="solid", size=.5)
})
# lncRNA_toploaded -----
output$lncRNA_toploaded <- renderPlot({
# GeneSet <- input$GeneSet_TLC
GeneSet <- lncrna_overlap
#GeneSet <- "'PRM1', 'SPATA42', 'SPRR4', 'NUPR2', 'HBZ', 'DYNLL2'"
if(length(grep(",", GeneSet)) == 0){
if(length(grep('"', GeneSet)) + length(grep("'", GeneSet))>0) {
GeneSet <- unlist(strsplit(gsub("'", '', gsub('"', '', GeneSet)), " "))
} else {
GeneSet <- unlist(strsplit(GeneSet, " "))
}
#print(GeneSet)
}else {
GeneSet <- (unlist(strsplit(gsub(" ", "", gsub("'", '', gsub('"', '', GeneSet))), ",")))
#print(GeneSet)
}
# print("length of your genes:")
# print(length(GeneSet))
GeneSetNot <- GeneSet[!GeneSet %in% colnames(results$loadings[[1]][,])]
GeneSet <- GeneSet[GeneSet %in% colnames(results$loadings[[1]][,])]
# print("length of your genes in this dataset:")
# print(length(GeneSet))
set.seed(666)
rndsamp1 = sample(colnames(results$loadings[[1]]), length(GeneSet), replace = F)
set.seed(1234)
rndsamp2 = sample(colnames(results$loadings[[1]]), length(GeneSet), replace = F)
set.seed(5678)
rndsamp3 = sample(colnames(results$loadings[[1]]), length(GeneSet), replace = F)
GeneSetLS = EnumSDA(geneV = GeneSet, Ladings = results$loadings[[1]])
rnds1LS = EnumSDA(geneV = rndsamp1, Ladings = results$loadings[[1]])
rnds2LS = EnumSDA(geneV = rndsamp2, Ladings = results$loadings[[1]])
rnds3LS = EnumSDA(geneV = rndsamp3, Ladings = results$loadings[[1]])
# plot(density(c(rnds1LS$DF[,1], rnds1LS$DF[,2])), xlim=range(-10,50))
# lines(density(c(rnds2LS$DF[,1], rnds2LS$DF[,2])))
# lines(density(c(lncLS$DF[,1], lncLS$DF[,2])))
SDAcountDFm = reshape2::melt(data.frame(randSamp1 = c(rnds1LS$DF[,1], rnds1LS$DF[,2]),
randSamp2 = c(rnds2LS$DF[,1], rnds2LS$DF[,2]),
randSamp3 = c(rnds3LS$DF[,1], rnds3LS$DF[,2]),
GeneSet = c(GeneSetLS$DF[,1], GeneSetLS$DF[,2]),
Comp = rep(paste0("SDA", 1:150), 2)))
SDAcountDFm$cond = ifelse(SDAcountDFm$variable == "GeneSet", "GeneSet", "RandSamp")
# print(head(SDAcountDFm))
plot_multi_histogram(SDAcountDFm, 'value', 'cond') +
theme_classic(base_size = 10)
})
# Top loaded components -----
output$TopLoadComp_Plot <- renderPlot({
GeneSet <- input$GeneSet_TLC
#GeneSet <- "'PRM1', 'SPATA42', 'SPRR4', 'NUPR2', 'HBZ', 'DYNLL2'"
if(length(grep(",", GeneSet)) == 0){
if(length(grep('"', GeneSet)) + length(grep("'", GeneSet))>0) {
GeneSet <- unlist(strsplit(gsub("'", '', gsub('"', '', GeneSet)), " "))
} else {
GeneSet <- unlist(strsplit(GeneSet, " "))
}
#print(GeneSet)
}else {
GeneSet <- (unlist(strsplit(gsub(" ", "", gsub("'", '', gsub('"', '', GeneSet))), ",")))
#print(GeneSet)
}
# print("length of your genes:")
# print(length(GeneSet))
GeneSetNot <- GeneSet[!GeneSet %in% colnames(results$loadings[[1]][,])]
GeneSet <- GeneSet[GeneSet %in% colnames(results$loadings[[1]][,])]
# print("length of your genes in this dataset:")
# print(length(GeneSet))
set.seed(666)
rndsamp1 = sample(colnames(results$loadings[[1]]), max(c(length(GeneSet), 1000)), replace = F)
set.seed(1234)
rndsamp2 = sample(colnames(results$loadings[[1]]), max(c(length(GeneSet), 1000)), replace = F)
set.seed(5678)
rndsamp3 = sample(colnames(results$loadings[[1]]), max(c(length(GeneSet), 1000)), replace = F)
GeneSetLS = EnumSDA(geneV = GeneSet, Ladings = results$loadings[[1]])
rnds1LS = EnumSDA(geneV = rndsamp1, Ladings = results$loadings[[1]])
rnds2LS = EnumSDA(geneV = rndsamp2, Ladings = results$loadings[[1]])
rnds3LS = EnumSDA(geneV = rndsamp3, Ladings = results$loadings[[1]])
# plot(density(c(rnds1LS$DF[,1], rnds1LS$DF[,2])), xlim=range(-10,50))
# lines(density(c(rnds2LS$DF[,1], rnds2LS$DF[,2])))
# lines(density(c(lncLS$DF[,1], lncLS$DF[,2])))
SDAcountDFm = reshape2::melt(data.frame(randSamp1 = c(rnds1LS$DF[,1], rnds1LS$DF[,2]),
randSamp2 = c(rnds2LS$DF[,1], rnds2LS$DF[,2]),
randSamp3 = c(rnds3LS$DF[,1], rnds3LS$DF[,2]),
GeneSet = c(GeneSetLS$DF[,1], GeneSetLS$DF[,2]),
Comp = rep(paste0("SDA", 1:150), 2)))
SDAcountDFm$cond = ifelse(SDAcountDFm$variable == "GeneSet", "GeneSet", "RandSamp")
# print(head(SDAcountDFm))
plot_multi_histogram(SDAcountDFm, 'value', 'cond') +
theme_classic(base_size = 10)
})
# TopLoadedBarplot -----
output$TopLoadedBarplot <- renderPlot({
# GeneSet <- lncrna_overlap
GeneSet <- input$GeneSet_TLC
#GeneSet <- "'PRM1', 'SPATA42', 'SPRR4', 'NUPR2', 'HBZ', 'DYNLL2'"
if(length(grep(",", GeneSet)) == 0){
if(length(grep('"', GeneSet)) + length(grep("'", GeneSet))>0) {
GeneSet <- unlist(strsplit(gsub("'", '', gsub('"', '', GeneSet)), " "))
} else {
GeneSet <- unlist(strsplit(GeneSet, " "))
}
#print(GeneSet)
}else {
GeneSet <- (unlist(strsplit(gsub(" ", "", gsub("'", '', gsub('"', '', GeneSet))), ",")))
#print(GeneSet)
}
GeneSet <- GeneSet[GeneSet %in% colnames(results$loadings[[1]][,])]
GeneSetLS = EnumSDA(geneV = GeneSet, Ladings = results$loadings[[1]])
dfm = reshape2::melt(cbind(GeneSetLS$DF, SDAannotation[rownames(GeneSetLS$DF),c("Component.ID", "Pathology", "Cell.Type")]),
id.var=c("comp", "Component.ID", "Pathology", "Cell.Type"))
# dfm$sig = ifelse(sigComps, "Sig", "NotSig")
ggplot(data=subset(dfm, Pathology !="Removed"), aes(x=reorder(comp, -value), y=value, fill=Cell.Type)) +
geom_bar(stat="identity", position=position_dodge()) + ggthemes::theme_base() +
# guides(col = guide_legend(nrow = 2, byrow = TRUE, override.aes = list(size = 2))) +
theme(legend.position = "bottom",
# axis.line=element_blank(),
axis.text.x=element_text(angle = 45, vjust = 1, hjust=1),
#axis.text.y=element_blank(),
#axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank(),
panel.background=element_blank(),
# panel.border=element_blank(),
panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),
plot.background=element_blank()) +
ggtitle("No of input genes in top 200 loaded genes\nComps that passed QC") +
facet_wrap(~variable, nrow = 2) #+
# geom_hline(yintercept= 22.3, color="black", linetype="dashed", size=.5)+
# geom_hline(yintercept= 18, color="black", linetype="dotted", size=.5)+
# geom_hline(yintercept= 12.1, color="black", linetype="solid", size=.5)
})
# CompCorPlot -----
output$CompCorPlot <- renderPlot({
tempLS = CompCor_Rx()
pheatmap::pheatmap(asinh(cor(t(tempLS$lnRNASDAusageMat))),
# cutree_rows = 5,
# clustering_distance_rows = "euclidean",
clustering_method = "ward.D2",
annotation_row = tempLS$annotDF,
annotation_colors = tempLS$my_colour,
# filename = "./inst/app/figs/lncRNA_CorOfCompsHM_HISTA_SDA_clean.pdf",
width = 12, height = 10, fontsize = 10,
main = "Pearson correlation \n Euc dist Ward.D2 h.clustering")
})
# CompCorCustPlot -----
output$CompCorCustPlot <- renderPlot({
tempLS = CompCorCust_Rx()
pheatmap::pheatmap(asinh(cor(t(tempLS$lnRNASDAusageMat))),
# cutree_rows = 5,
# clustering_distance_rows = "euclidean",
clustering_method = "ward.D2",
annotation_row = tempLS$annotDF,
annotation_colors = tempLS$my_colour,
# filename = "./inst/app/figs/lncRNA_CorOfCompsHM_HISTA_SDA_clean.pdf",
width = 12, height = 10, fontsize = 10,
main = "Pearson correlation \n Euc dist Ward.D2 h.clustering")
})
# GeneCorPlot -----
output$GeneCorPlot <- renderPlot({
tempCor = GeneCor_Rx()
pheatmap::pheatmap(tempCor)
})
## External data ------
## Soma only with LN19 ------
output$tSNE_somaWLN_Pheno3_Rx <- renderPlot({
tSNE_somaWLN_Pheno3_Rx()
})
output$tSNE_somaWLN_COND.ID_Rx <- renderPlot({
tSNE_somaWLN_COND.ID_Rx()
})
output$tSNE_somaWLN_DONR.ID_Rx <- renderPlot({
tSNE_somaWLN_DONR.ID_Rx()
})
output$tSNE_somaWLN_nCount_RNA_Rx <- renderPlot({
tSNE_somaWLN_nCount_RNA_Rx()
})
## LC with Zhao20 and LN19 ------
output$DimRedux_LConly_donors_Rx <- renderPlot({
DimRedux_LConly_donors_Rx()
})
output$DimRedux_LConly_phenotype_Rx <- renderPlot({
DimRedux_LConly_phenotype_Rx()
})
output$DimRedux_LConlyZhao_phenotype_Rx <- renderPlot({
DimRedux_LConlyZhao_phenotype_Rx()
})
output$DimRedux_LConlyZhao_donors_Rx <- renderPlot({
DimRedux_LConlyZhao_donors_Rx()
})
output$DimRedux_LConlyZhao_phenotypeProp_Rx <- renderPlot({
DimRedux_LConlyZhao_phenotypeProp_Rx()
})
output$DimRedux_LConlyZhao_KeyGenesViolin_Rx <- renderPlot({
DimRedux_LConlyZhao_KeyGenesViolin_Rx()
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.