ComputeARI_Ser | R Documentation |
This function calculates the Adjusted Rand Index (ARI) between the true biological labels (e.g., cell types) and the predicted cluster assignments in a Seurat object. ARI is used to evaluate the similarity between two clustering results.
ComputeARI_Ser(
SerObj,
true.label = "cell_type",
predicted.label = "seurat_clusters"
)
SerObj |
A Seurat object containing the single-cell RNA-seq data. |
true.label |
Character. The metadata label representing the true biological labels (e.g., "cell_type") in 'SerObj@meta.data'. Default is '"cell_type"'. |
predicted.label |
Character. The metadata label representing the predicted cluster assignments (e.g., "seurat_clusters") in 'SerObj@meta.data'. Default is '"seurat_clusters"'. |
The Adjusted Rand Index (ARI) score. A higher ARI indicates better alignment between the true labels and the predicted clusters.
# Compute ARI between true cell types and predicted Seurat clusters
ari_score <- ComputeARI_Ser(SerObj, true.label = "cell_type", predicted.label = "seurat_clusters")
# Compute ARI for a different set of predicted clusters
ari_score <- ComputeARI_Ser(SerObj, true.label = "cell_type", predicted.label = "cluster_method_X")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.