R/get.distances.R

Defines functions get.distances

Documented in get.distances

#' @title Find distances between nearby points, within specified radius.
#'
#' @description WORK IN PROGRESS. Returns the distances from one set of points to nearby members of another set of points.
#' 
#' @details 
#'  This function returns a matrix or vector of distances, 
#'  which are the distances from one set of points to the nearby members of another set of points.
#'  It searches within a circle (of radius = radius, defining what is considered nearby), 
#'  to calculate distance (in miles or km) from each of frompoints to each of topoints that is within the specified radius.
#'  Points are specified using latitude and longitude in decimal degrees.  \cr \cr
#'  Uses \code{\link{get.distances.all}}. Relies on the \pkg{sp} package for the \code{\link[sp]{spDists}} and \code{\link[sp]{SpatialPoints}} functions.   \cr \cr
#'  Regarding distance calculation, also see \url{http://en.wikipedia.org/wiki/Vincenty\%27s_formulae}, 
#'  \url{http://williams.best.vwh.net/avform.htm#Dist}, \url{http://sourceforge.net/projects/geographiclib/}, 
#'  and \url{http://www.r-bloggers.com/great-circle-distance-calculations-in-r/}.  \cr \cr
#'  Finding distance to all of the 11 million census blocks in usa within 5 km, for 100 points, can take a while.
#'  May want to look at js library like turf, 
#'  or investigate using data.table to index and more quickly subset the (potentially 11 million Census blocks of) topoints
#'  (or pre-index that block point dataset and allow this function to accept a data.table as input).
#' @param frompoints A matrix or data.frame with two cols, 'lat' and 'lon' with datum=WGS84 assumed.
#' @param topoints A matrix or data.frame with two cols, 'lat' and 'lon' with datum=WGS84 assumed.
#' @param radius A single number defining nearby, the maximum distance searched for or recorded. 
#'   Default is max allowed... radius must be less than about 8,368 kilometers (5,200 miles, or the distance from Hawaii to Maine)
#' @param units A string that is 'miles' by default, or 'km' for kilometers, specifying units for radius and distances returned.
#' @param ignore0 A logical, default is FALSE, specifying whether to ignore distances that are zero and report only nonzero distances.
#'   Useful if want distance to points other than self, where frompoints=topoints, for example. Ignored if return.crosstab = TRUE.
#' @param dfunc Optional character element "hf" or "slc" to specify distance function Haversine or spherical law of cosines.
#'   If "sp" (default), it uses the \pkg{sp} package to find distances more accurately and more quickly. 
#' @param return.crosstab Logical value, FALSE by default. If TRUE, value returned is a matrix of the distances, 
#'   with a row per frompoint and col per topoint. (Distances larger than max search radius are not provided, even in this format).
#' @param return.rownums Logical value, TRUE by default. If TRUE, value returned also includes two extra columns:
#'   a col of index numbers starting at 1 specifying the frompoint and a similar col specifying the topoint.
#' @param return.latlons Logical value, FALSE by default. If TRUE, value returned also includes four extra columns,
#'   showing fromlat, fromlon, tolat, tolon.
#' @param as.df Optional logical, default is TRUE
#' @param tailored.deltalon Logical value, FALSE by default, but ignored. Leftover from older get.distances function. Defined size of initially searched area as function of lat, for each frompoint,
#' rather than initially searching a conservatively large box. 
#' 
#' @return By default, returns a dataframe that has 3 columns: fromrow, torow, distance 
#'   (where fromrow or torow is the row number of the corresponding input, starting at 1).
#'   Distance returned is in miles by default, but with option to set units='km' to get kilometers.
#'   See parameters for details on other formats that may be returned if specified.
#' @seealso \code{\link{get.distances.all}} which allows you to get distances between all points,
#'   \code{\link{get.distances.prepaired}} for finding distances when data are already formatted as pairs of points,
#'   \code{\link{get.nearest}} which finds the distance to the single nearest point 
#'   within a specified search radius instead of all topoints, and 
#'   \code{\link{proxistat}} which calculates a proximity score for each spatial unit based on distances to nearby points.
#' @concept proximity
#' @examples #
#' set.seed(999)
#' t1=testpoints(1)
#' t10=testpoints(10)
#' t100=testpoints(100,  minlat = 25, maxlat = 45, minlon = -100, maxlon = -60)
#' t1k=testpoints(1e3,   minlat = 25, maxlat = 45, minlon = -100, maxlon = -60)
#' t10k=testpoints(1e4)
#' t100k=testpoints(1e5)
#' t1m=testpoints(1e6)
#' #t10m=testpoints(1e7)
#'    test.from <- structure(list(fromlat = c(38.9567309094, 45), 
#'      fromlon = c(-77.0896572305, -100)), .Names = c("lat", "lon"), 
#'      row.names = c("1", "2"), class = "data.frame")
#'     
#'    test.to <- structure(list(tolat = c(38.9575019287, 38.9507043428, 45), 
#'     tolon = c(-77.0892818598, -77.2, -90)), 
#'     .Names = c("lat", "lon"), class = "data.frame", 
#'     row.names = c("1", "2", "3"))
#'     
#'    #*** Can fail if radius=50 miles? ... Error in rbind() numbers of
#'    #  columns of arguments do not match !
#'    #big = get.distances(t100, t1k, radius=100, units='miles', return.latlons=TRUE, as.df=TRUE) 
#'      head(big)
#'      #summary(big$d)
#'    big = get.distances(t100, t1k, radius=100, units='miles', return.latlons=TRUE, as.df=TRUE) 
#'      head(big)
#'      summary(big$d)
#'    
#'    # see as map of many points
#'     plot(big$fromlon, big$fromlat,main='from black circles... 
#'       closest is red, others nearby are green ')
#'     points(t1k$lon, t1k$lat, col='blue',pch='.')
#'     points(big$tolon, big$tolat, col='green')
#'    junk=as.data.frame( get.nearest(t100, t1k, return.latlons=TRUE) )
#'    points(junk$tolon, junk$tolat, col='red')
#'    # Draw lines from frompoint to nearest:
#'    with(junk,linesegments(fromlon, fromlat, tolon, tolat) )
#'    
#'     # more test cases
#'  length(get.distances(t10,t10,radius=4999,ignore0 = TRUE, units='km')$d)
#'  get.distances(t10,t10,radius=4999,ignore0 = TRUE, units='km')
#' get.distances(test.from[1,],test.to[1,],radius=3000,return.rownums=F,return.latlons=F)
#' get.distances(test.from[1,],test.to[1,],radius=3000,return.rownums=FALSE,return.latlons=TRUE)
#' get.distances(test.from[1,],test.to[1,],radius=3000,return.rownums=TRUE,return.latlons=FALSE)
#' get.distances(test.from[1,],test.to[1,],radius=3000,return.rownums=TRUE,return.latlons=TRUE)
#'  
#' get.distances(test.from[1,],test.to[1:3,],radius=3000,return.rownums=F,return.latlons=F)
#' get.distances(test.from[1,],test.to[1:3,],radius=3000,return.rownums=FALSE,return.latlons=TRUE)
#' get.distances(test.from[1,],test.to[1:3,],radius=3000,return.rownums=TRUE,return.latlons=FALSE)
#' get.distances(test.from[1,],test.to[1:3,],radius=3000,return.rownums=TRUE,return.latlons=TRUE)
#'  
#' get.distances(test.from[1:2,],test.to[1,],radius=3000,return.rownums=F,return.latlons=F)
#' get.distances(test.from[1:2,],test.to[1,],radius=3000,return.rownums=FALSE,return.latlons=TRUE)
#' get.distances(test.from[1:2,],test.to[1,],radius=3000,return.rownums=TRUE,return.latlons=FALSE)
#' get.distances(test.from[1:2,],test.to[1,],radius=3000,return.rownums=TRUE,return.latlons=TRUE)
#'  
#' get.distances(test.from[1:2,],test.to[1:3,],radius=3000,return.rownums=F,return.latlons=F)
#' get.distances(test.from[1:2,],test.to[1:3,],radius=3000,return.rownums=FALSE,return.latlons=T)
#' get.distances(test.from[1:2,],test.to[1:3,],radius=3000,return.rownums=TRUE,return.latlons=F)
#' get.distances(test.from[1:2,],test.to[1:3,],radius=3000,return.rownums=TRUE,return.latlons=TRUE)
#' get.distances(test.from[1:2,],test.to[1:3,], radius=0.7,return.rownums=TRUE,
#'   return.latlons=TRUE, units='km')
#' get.distances(test.from[1:2,],test.to[1:3,], radius=0.7,return.rownums=TRUE,
#'   return.latlons=TRUE, units='miles')
#' 
#'   # Warning messages:
#'   # Ignoring return.crosstab because radius was specified
#' get.distances(test.from[1,],test.to[1:3, ], return.crosstab=TRUE)
#' get.distances(test.from[1:2,],test.to[1, ], return.crosstab=TRUE)
#' get.distances(test.from[1:2,],test.to[1:3, ], return.crosstab=TRUE)
#' get.distances(test.from[1:2,],test.to[1:3, ], radius=0.7, return.crosstab=TRUE)
#' @export
get.distances <- function(frompoints, topoints, radius=5200, units='miles', ignore0=FALSE, dfunc='sp', as.df=FALSE,
                    return.rownums=TRUE, return.latlons=FALSE, return.crosstab=FALSE, tailored.deltalon=FALSE) {
  maxradius.miles <- 5200
  
  # notes:
  #  Index blocks on longitude and latitude. Use data.table for speed?
  
  # Can't really do radius and return.crosstab simultaneously -- either the entire matrix is filled in or doesn't make sense / not easy to use spDists() to get matrix for only some combos
  # unless could do vector version of distances and remove those over distance limit (waste of time to calculate all pairs then), and report in matrix format. 
  # Loses the time-savings benefits of setting radius unless done right.
  
  # Error check radius and units (km or miles)

  if (!(units %in% c('km', 'miles'))) {stop('units must be "miles" (default) or "km" to specify units for values returned, and for radius if specified')}
  #km.per.mile <- 1.609344  # default km is 8.04672 if 5 miles
  km.per.mile <- convert(1, 'miles', 'km')
  missingradius <- missing(radius)

  radius.miles <- convert(radius, units, 'mi')
  if (radius.miles > maxradius.miles) {
    stop(paste(
      'radius must be less than about', 
      round(convert(maxradius.miles, 'mi', 'km'), 1),
      'kilometers (actually ',
      maxradius.miles,
      ' miles, or the distance from Hawaii to Maine)'
    )) 
  }
  if (is.na(radius) || !is.numeric(radius) || radius<0 || is.infinite(radius)  ) {stop('invalid radius')}
  
  if (return.crosstab) { if ( !missingradius ) {warning('Ignoring return.crosstab because radius was specified'); return.crosstab <- FALSE} }
  
  # handle cases where an input is only one row (one point)
  if (is.vector(frompoints)) {mycols <- names(frompoints); frompoints <- matrix(frompoints, nrow=1); dimnames(frompoints)[[2]] = mycols }
  if (is.vector(  topoints)) {mycols <- names(  topoints);   topoints <- matrix(  topoints, nrow=1); dimnames(  topoints)[[2]] = mycols }

  colnames(frompoints) <- latlon.colnames.check(frompoints)
  colnames(  topoints) <- latlon.colnames.check(  topoints)
  
  fromcount <- length(frompoints[ , 1])
  tocount   <- length(  topoints[ , 1])
  
  if (!return.rownums & !return.latlons & !return.crosstab) {wantvector <- TRUE} else {wantvector <- FALSE}
  
  
  ############# KEY FUNCTION -- gets distance for every pair of from-to: ############### #
  
  # *** ideally to avoid warning HAVE TO NAME THE COLS lat lon lat lon here:
  
  if (dfunc=='sp') {
    results <- get.distances.all(
      frompoints, topoints,
      units=units,
      return.latlons=return.latlons, 
      return.rownums=return.rownums, 
      return.crosstab=return.crosstab,
      as.df=as.df
    )
  } else {
    
    # reformat frompoints and topoints to have 1 row per combo (per from-to pair, i.e., per distance)
    latlonpairs = cbind(
      analyze.stuff::expand.gridMatrix(frompoints$lat, topoints$lat), 
      analyze.stuff::expand.gridMatrix(frompoints$lon, topoints$lon)
    )
    colnames(latlonpairs) <- c('fromlat', 'tolat', 'fromlon', 'tolon')
    
    results <- gcd(
      frompoints= latlonpairs[ , c('fromlat', 'fromlon')],
      topoints=   latlonpairs[ , c(  'tolat',   'tolon')],
      units=units,
      dfunc=dfunc
    )
    results <- cbind(d=results)
    
    if (return.crosstab) {
      # reformat to be 1 row per frompoints and 1 col per topoints
      results <- matrix(results, nrow=length(frompoints[,1]), ncol=length(topoints[,1]), byrow=FALSE)
      if (as.df) {results=as.data.frame(results)}
      return(results)
    }
    
    if (return.rownums) {
      # Create rownums in correct format... cycle through frompoints first, then topoints 
      rownumpairs <- cbind(expand.gridMatrix(1:length(frompoints[,1]), 1:length(topoints[,1])))
      results <- cbind(rownumpairs, results)
      colnames(results) <- c('fromrow','torow', 'd')
    }
    
    if (return.latlons) {
      results <- cbind(results, latlonpairs[ , c('fromlat' ,'fromlon', 'tolat', 'tolon')])
    }
    
    # units should already be same for results and radius, as defined by units param
    #if (units=='miles') { results <- convert(results, from='km', towhat = 'mi')}
    
    if (as.df) {results <- as.data.frame(results)}
    
  }
  
  # Remove those outside radius, and remove zero distances if ignore0=TRUE (now radius and results are both in same units)
  
  if (return.crosstab) {
    return(results)
  }
    
  if (!wantvector) {
    
    # what if return.crosstab?
    
    results <- results[ results[ , 'd'] <= radius, ]
    if (ignore0) { results <- results[ results[,'d'] != 0,  ] }
    
  } else {
    results <- results[ results <= radius]
    if (ignore0) { results <- results[ results != 0 ] }
  }
  
  return(results)
}
ejanalysis/proxistat documentation built on Dec. 31, 2019, 11:51 p.m.