Description Usage Arguments Value See Also Examples
Data driven functional quantization based on Centroidal Voronoi Tessellation.
1 |
data |
matrix that we want to quantize. |
size |
size of the quantization grids. |
iter |
the number of iterations. |
data |
the input matrix. |
quantizer |
the quantizer grid. |
weights |
the associated weight of each curve (calculated using the input matrix). |
StochGradient and GFQ
1 2 3 4 5 6 7 8 9 10 11 12 13 | ##### function to generate realizations of BM
BM <- function(N=1000,M=1,x0=0,t0=0,T=1,Dt=NULL)
{
Dt <- (T - t0)/N
t <- seq(t0, T, by=Dt)
res <- data.frame(sapply(1:M,function(i) c(0,cumsum(rnorm(N,mean =0,sd=sqrt(Dt))))))
names(res) <- paste("X",1:M,sep="")
X <- ts(res, start = t0, deltat = Dt)
return(X)
}
data <- t(BM(N = 200 - 1, M = 200))
size <- 10
quant <- CVT(data,size,iter=22)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.