GFQ: Greedy Functional Quantization

Description Usage Arguments Value See Also Examples

View source: R/GFQ.R

Description

Data-driven greedy functional quantization based on the distorsion error or the maximin (a space filling design criterion)

Usage

1
GFQ(data,mKL,size,method,deepstart=TRUE)

Arguments

data

matrix that we want to quantize.

mKL

truncation argument for the dimension reduction.

size

size of the quantization grids.

method

"L2" or "maximin".

deepstart

maximin, if TRUE: the quantization is started by the central curve.

Value

data

the input matrix.

quantizer

the quantizer grid (curves are chosen among the input data.

weights

the associated weight of each curve (calculated using the input matrix).

See Also

CVT and StochGradient

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
##### function to generate realizations of BM
BM <- function(N=1000,M=1,x0=0,t0=0,T=1,Dt=NULL)
{
  Dt <- (T - t0)/N
  t <- seq(t0, T, by=Dt)
  res <- data.frame(sapply(1:M,function(i) c(0,cumsum(rnorm(N,mean  =0,sd=sqrt(Dt))))))
  names(res) <- paste("X",1:M,sep="")
  X <- ts(res, start = t0, deltat = Dt)
  return(X)
}

data <- t(BM(N=200-1,M=200))
mKL <- 2
size <- 10
method <- "maximin"
quant <- GFQ(data,mKL,size,method,deepstart=TRUE)

elamrireda/FunctQuant documentation built on Jan. 1, 2021, 2:50 p.m.