StochGradient: Functional quantization with stochastic gradient method

Description Usage Arguments Value See Also Examples

View source: R/StochGradient.R

Description

Data-driven functional quantization with stochastic gradient method

Usage

1
StochGradient(data,mKL,size)

Arguments

data

matrix that we want to quantize.

mKL

truncation argument for the dimension reduction.

size

size of the quantization grids.

Value

data

the input matrix.

quantizer

the quantizer grid.

weights

the associated weight of each curve (calculated using the input matrix).

See Also

CVT and GFQ

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
##### function to generate realizations of BM
BM <- function(N=1000,M=1,x0=0,t0=0,T=1,Dt=NULL)
{
  Dt <- (T - t0)/N
  t <- seq(t0, T, by=Dt)
  res <- data.frame(sapply(1:M,function(i) c(0,cumsum(rnorm(N,mean  =0,sd=sqrt(Dt))))))
  names(res) <- paste("X",1:M,sep="")
  X <- ts(res, start = t0, deltat = Dt)
  return(X)
}
data <- t(BM(N = 200 - 1, M = 200))
size <- 10
mKL <- 2
quant <- StochGradient(data,mKL,size)

elamrireda/FunctQuant documentation built on Jan. 1, 2021, 2:50 p.m.