make.jagsboralmodel <- function(family, num.X = 0, X.ind = NULL, num.traits = 0, which.traits = NULL,
lv.control = list(num.lv = 2, type = "independent"), row.eff = "none", row.ids = NULL,
offset = NULL, trial.size = 1, n, p, model.name = NULL,
prior.control = list(type = c("normal", "normal", "normal", "uniform"), hypparams = c(10, 10, 10, 30), ssvs.index = -1, ssvs.g = 1e-6, ssvs.traitsindex = -1), num.lv = NULL) {
check_which_traits(num.traits = num.traits, which.traits = which.traits, num.X = num.X, makejagsboralfile_messages = TRUE)
if (is.null(which.traits)) {
which.traits <- vector("list", num.X + 1)
for (k in 1:(num.X + 1)) {
which.traits[[k]] <- 0
}
}
lv.control <- check_lv_control(num.lv = num.lv, lv.control = lv.control, need.distmat = FALSE)
num.lv <- lv.control$num.lv
complete_trial_size <- check_trial_size(family = family, trial.size = trial.size, create.complete.trial.size = TRUE, y = matrix(NA, nrow = 1, ncol = p))
complete_family <- check_family(family = family, y = matrix(NA, nrow = 1, ncol = p), traits = NULL)
if (row.eff != "none" && is.null(row.ids)) {
row.ids <- matrix(1:n, ncol = 1)
message("row.ids assumed to be matrix with one column and elements 1,2,...n i.e., a row-specific intercept")
}
if (!is.null(row.ids)) {
row.ids <- as.matrix(row.ids)
if (nrow(row.ids) != n) {
stop("Number of rows in the matrix row.ids should be equal to n")
}
if (is.null(colnames(row.ids))) {
colnames(row.ids) <- paste0("ID", 1:ncol(row.ids))
}
}
if (!is.null(offset)) {
if (!is.matrix(offset)) {
stop("offset could be a matrix with the same dimensions as y")
}
}
prior.control <- fillin_prior_control(x = prior.control)
check_prior_control(prior.control = prior.control)
if (length(prior.control$ssvs.index) == 1 & num.X > 0) {
prior.control$ssvs.index <- rep(prior.control$ssvs.index, num.X)
}
if (num.traits > 0) {
if (!is.list(prior.control$ssvs.traitsindex)) {
prior.control$ssvs.traitsindex <- vector("list", num.X + 1)
for (k in 1:(num.X + 1)) {
prior.control$ssvs.traitsindex[[k]] <- rep(-1, length(which.traits[[k]]))
}
}
if (is.list(prior.control$ssvs.traitsindex)) {
check_ssvstraits(prior.control$ssvs.traitsindex, which.traits)
}
}
X.ind <- check_X_ind(X.ind = X.ind, p = p, num.X = num.X, prior.control = prior.control)
index.ord.cols <- which(complete_family == "ordinal")
index.tweed.cols <- which(complete_family == "tweedie")
## Checks done; starting writing JAGS script!
model_script <- paste0("## JAGS model written for boral version ", packageDescription("boral")$Version, " on ", as.character(Sys.time()), " ##\n\n model {")
model_script <- c(model_script, "\t ## Data Level ## \n\t for(i in 1:n) {")
write.resp.script <- setup.resp.families.lv(p = p, complete.family = complete_family, num.lv = num.lv, row.eff = row.eff, row.ids = row.ids, offset = offset, num.X = num.X, complete.trial.size = complete_trial_size, index.tweed.cols = index.tweed.cols, index.ord.cols = index.ord.cols)
model_script <- c(model_script, write.resp.script)
model_script <- c(model_script, paste0("\t\t }"))
model_script <- c(model_script, paste0("\t ## Latent variables ##"))
if (lv.control$type == "independent") {
model_script <- c(model_script, paste0("\t for(i in 1:n) { for(k in 1:num.lv) { lvs[i,k] ~ dnorm(0,1) } } \n\n\t ## Process level and priors ##"))
}
if (lv.control$type == "exponential") {
model_script <- c(model_script, paste0("\t for(k in 1:num.lv) { lvs[1:n,k] ~ dmnorm(zero.lvs,invSigma.lvs) } \n\t for(k1 in 1:n) { for(k2 in 1:n) { Sigma.lvs[k1,k2] <- exp(-distmat[k1,k2]/lv.covparams[1]) } } \n\t invSigma.lvs <- inverse(Sigma.lvs) \n\n\t ## Process level and priors ##"))
}
if (lv.control$type == "squared.exponential") {
model_script <- c(model_script, paste0("\t for(k in 1:num.lv) { lvs[1:n,k] ~ dmnorm(zero.lvs,invSigma.lvs) } \n\t for(k1 in 1:n) { for(k2 in 1:n) { Sigma.lvs[k1,k2] <- exp(-pow(distmat[k1,k2]/lv.covparams[1],2)) } } \n\t invSigma.lvs <- inverse(Sigma.lvs) \n\n\t ## Process level and priors ##"))
}
if (lv.control$type == "powered.exponential") {
model_script <- c(model_script, paste0("\t for(k in 1:num.lv) { lvs[1:n,k] ~ dmnorm(zero.lvs,invSigma.lvs) } \n\t for(k1 in 1:n) { for(k2 in 1:n) { Sigma.lvs[k1,k2] <- exp(-pow(distmat[k1,k2]/lv.covparams[1],lv.covparams[2])) } } \n\t invSigma.lvs <- inverse(Sigma.lvs) \n\n\t ## Process level and priors ##"))
}
if (lv.control$type == "spherical") {
model_script <- c(model_script, paste0("\t for(k in 1:num.lv) { lvs[1:n,k] ~ dmnorm(zero.lvs,invSigma.lvs) } \n\t for(k1 in 1:n) { for(k2 in 1:n) { Sigma.lvs[k1,k2] <- step(lv.covparams[1] - distmat[k1,k2])*(1 - 1.5*distmat[k1,k2]/lv.covparams[1] + 0.5*pow(distmat[k1,k2]/lv.covparams[1],3)) } } \n\t invSigma.lvs <- inverse(Sigma.lvs) \n\n\t ## Process level and priors ##"))
}
# if(lv.control$type == "cauchy") ## DOES NOT WORK VERY WELL!
# model_script <- c(model_script, paste0("\t for(k in 1:num.lv) { lvs[1:n,k] ~ dmnorm(zero.lvs,invSigma.lvs) } \n\t for(k1 in 1:n) { for(k2 in 1:n) { Sigma.lvs[k1,k2] <- pow(1+ pow(distmat[k1,k2]/lv.covparams[1],2), -lv.covparams[2]) } } \n\t invSigma.lvs <- inverse(Sigma.lvs) \n\n\t ## Process level and priors ##"))
## Matern not implemented to due complications/lack of direct availability of a BesselK function
rm(write.resp.script)
## Build prior strings for all priors distributions
prior.strings <- construct.prior.strings(x = prior.control)
## Code for column-specific intercept. Note this is set up different to how X variables are set up to save some coding space!
## No traits or traits included but not regressed against intercept
if (num.traits == 0 || (num.traits > 0 & which.traits[[1]][1] == 0)) {
## Not ordinal columns, then as per usual
if (length(index.ord.cols) == 0) {
model_script <- c(model_script, paste0("\t for(j in 1:p) { lv.coefs[j,1] ~ ", prior.strings$p1, " } ## Separate species intercepts"))
}
## If 1 ordinal column, then intercept for this column equal 0
if (length(index.ord.cols) == 1) {
model_script <- c(model_script, paste0("\t lv.coefs[", index.ord.cols, ",1] <- 0 ## Single ordinal species intercept"))
for (j in (1:p)[-index.ord.cols]) {
model_script <- c(model_script, paste0("\t lv.coefs[", j, ",1] ~ ", prior.strings$p1, "All other species intercepts"))
}
}
## More than 1 ordinal column, then set up random intercept for this species
if (length(index.ord.cols) > 1) {
if (length(index.ord.cols) == p) {
model_script <- c(model_script, paste0("\t for(j in 1:p) { lv.coefs[j,1] ~ dnorm(0,pow(ordinal.sigma,-2)) } ## Random intercept for all ordinal species"))
} else {
for (j in index.ord.cols) {
model_script <- c(model_script, paste0("\t lv.coefs[", j, ",1] ~ dnorm(0,pow(ordinal.sigma,-2)) ## Random intercept for all ordinal species"))
}
for (j in (1:p)[-index.ord.cols]) {
model_script <- c(model_script, paste0("\t lv.coefs[", j, ",1] ~ ", prior.strings$p1, "All other species intercepts"))
}
}
model_script <- c(model_script, paste0("\t ordinal.sigma ~ ", prior.strings$p4))
}
if ((num.traits > 0 & which.traits[[1]][1] == 0)) {
model_script <- c(model_script, paste0("\t traits.int[1] <- 0; for(l in 1:num.traits) { traits.coefs[1,l] <- 0 } \n\t trait.sigma[1] <- 0 ## Traits not used for intercept"))
}
}
## Traits included in model and regressed against intercept
if (num.traits > 0 & all(which.traits[[1]] > 0)) {
## If there are 0 or > 1 ordinal columns, then regress all intercepts against traits
if (length(index.ord.cols) != 1) {
model_script <- c(model_script, paste0("\t for(j in 1:p) { lv.coefs[j,1] ~ dnorm(traits.int[1] + inprod(traits[j,],traits.coefs[1,1:num.traits]),pow(trait.sigma[1],-2)) } ## Species intercepts regressed against traits"))
}
## If there is 1 ordinal column, do not regress this intercept against trait
if (length(index.ord.cols) == 1) {
model_script <- c(model_script, paste0("\t lv.coefs[", index.ord.cols, ",1] <- 0 ## Ordinal species intercept"))
for (j in (1:p)[-index.ord.cols]) {
model_script <- c(model_script, paste0("\t lv.coefs[", j, ",1] ~ dnorm(traits.int[1] + inprod(traits[", j, ",],traits.coefs[1,1:num.traits]),pow(trait.sigma[1],-2)) ## All other intercepts"))
}
}
model_script <- c(model_script, paste0("\t traits.int[1] ~ ", prior.strings$p1))
for (l in which.traits[[1]]) {
if (prior.control$ssvs.traitsindex[[1]][which(which.traits[[1]] == l)] == -1) {
model_script <- c(model_script, paste0("\t traits.coefs[", 1, ",", l, "] ~ ", prior.strings$p1, " ## Traits used for intercept"))
}
if (prior.control$ssvs.traitsindex[[1]][which(which.traits[[1]] == l)] == 0) {
ssvs.prior.string <- paste0("dnorm(0,pow(", prior.control$hypparams[1], "*((1-ssvs.traitscoefs1", l, ")*", prior.control$ssvs.g, " + ssvs.traitscoefs1", l, "),-1)); ssvs.traitscoefs1", l, " ~ dbern(0.5)")
model_script <- c(model_script, paste0("\t traits.coefs[", 1, ",", l, "] ~ ", ssvs.prior.string, " ## Traits used for intercept"))
}
}
if (length((1:num.traits)[-which.traits[[1]]]) > 0) {
for (l in (1:num.traits)[-which.traits[[1]]]) {
model_script <- c(model_script, paste0("\t traits.coefs[", 1, ",", l, "] <- 0 ## Traits not used for intercept"))
}
}
model_script <- c(model_script, paste0("\t trait.sigma[1] ~ ", prior.strings$p4))
}
if (any(complete_family == "tweedie")) {
model_script <- c(model_script, paste0("\t powerparam ~ dunif(1,2) ## Tweedie power parameter"))
}
if (any(complete_family == "ordinal")) {
model_script <- c(model_script, paste0("\t for(k in 1:(num.ord.levels-1)) { cutoffs0[k] ~ ", prior.strings$p1, " }"))
model_script <- c(model_script, paste0("\t cutoffs[1:(num.ord.levels-1)] <- sort(cutoffs0) ## Ordinal cutoffs"))
}
## Priors on row effects
if (row.eff == "fixed") {
for (k in 1:ncol(row.ids))
{
model_script <- c(model_script, paste0("\n\t row.coefs.ID", k, "[1] <- 0"))
model_script <- c(model_script, paste0("\n\t for(i in 2:n.ID[", k, "]) { row.coefs.ID", k, "[i] ~ ", prior.strings$p1, " } "))
}
}
if (row.eff == "random") {
for (k in 1:ncol(row.ids)) {
model_script <- c(model_script, paste0("\n\t for(i in 1:n.ID[", k, "]) { row.coefs.ID", k, "[i] ~ dnorm(0, pow(row.sigma.ID", k, ",-2)) } "))
model_script <- c(model_script, paste0("\t row.sigma.ID", k, " ~ ", prior.strings$p4))
}
}
## Priors on latent variables if required, controlled by prior.control$hypparams[2]
if (lv.control$type %in% c("exponential", "squared.exponential", "spherical")) {
model_script <- c(model_script, paste0("\t lv.covparams[1] ~ ", prior.strings$p22))
}
if (lv.control$type %in% c("powered.exponential")) {
model_script <- c(model_script, paste0("\t lv.covparams[1] ~ ", prior.strings$p22))
model_script <- c(model_script, paste0("\t lv.covparams[2] ~ dunif(0,2)"))
}
## Priors on Latent variable coefficients, controlled by prior.control$hypparams[2]
model_script <- c(model_script, paste0("\n\t for(i in 1:(num.lv-1)) { for(j in (i+2):(num.lv+1)) { lv.coefs[i,j] <- 0 } } ## Constraints to 0 on upper diagonal"))
model_script <- c(model_script, paste0("\t for(i in 1:num.lv) { lv.coefs[i,i+1] ~ ", prior.strings$p22, " } ## Sign constraints on diagonal elements"))
model_script <- c(model_script, paste0("\t for(i in 2:num.lv) { for(j in 2:i) { lv.coefs[i,j] ~ ", prior.strings$p2, " } } ## Free lower diagonals"))
model_script <- c(model_script, paste0("\t for(i in (num.lv+1):p) { for(j in 2:(num.lv+1)) { lv.coefs[i,j] ~ ", prior.strings$p2, " } } ## All other elements"))
## Prior for X-coefficients, controlled by prior.control$hypparams[3]
if (num.X > 0) {
model_script <- c(model_script, paste0("\n"))
## Traits not included in model
if (num.traits == 0) {
for (i in 1:length(prior.control$ssvs.index)) {
if (prior.control$ssvs.index[i] == -1) {
if (!is.null(X.ind)) {
model_script <- c(model_script, paste0("\t for(j in 1:p) { X.coefs[j,", i, "] ~ ", prior.strings$p3, "I(-X.ind[j,", i, "],X.ind[j,", i, "]) } "))
}
if (is.null(X.ind)) {
model_script <- c(model_script, paste0("\t for(j in 1:p) { X.coefs[j,", i, "] ~ ", prior.strings$p3, " } "))
}
}
if (prior.control$ssvs.index[i] == 0) {
ssvs.prior.string <- paste0("dnorm(0,pow(", prior.control$hypparams[3], "*((1-ssvs.indX", i, "[j])*", prior.control$ssvs.g, " + ssvs.indX", i, "[j]),-1)); ssvs.indX", i, "[j] ~ dbern(0.5)")
model_script <- c(model_script, paste0("\t for(j in 1:p) { X.coefs[j,", i, "] ~ ", ssvs.prior.string, " }"))
}
if (prior.control$ssvs.index[i] > 0) {
ssvs.prior.string <- paste0("dnorm(0,pow(", prior.control$hypparams[3], "*((1-ssvs.gp", prior.control$ssvs.index[i], ")*", prior.control$ssvs.g, " + ssvs.gp", prior.control$ssvs.index[i], "),-1))")
model_script <- c(model_script, paste0("\t for(j in 1:p) { X.coefs[j,", i, "] ~ ", ssvs.prior.string, " } "))
}
}
}
if (num.traits > 0) {
for (i in 1:num.X) {
## Traits included but X coefs not regressed against them
if (which.traits[[i + 1]][1] == 0) {
model_script <- c(model_script, paste0("\t for(j in 1:p) { X.coefs[j,", i, "] ~ ", prior.strings$p3, " } ## Coefficient not regressed against any traits"))
model_script <- c(model_script, paste0("\t traits.int[", i + 1, "] <- 0; trait.sigma[", i + 1, "] <- 0; for(l in 1:num.traits) { traits.coefs[", i + 1, ",l] <- 0 } \n"))
}
## Traits included and X coefs regressed against some of them
if (all(which.traits[[i + 1]] > 0)) {
model_script <- c(model_script, paste0("\t for(j in 1:p) { X.coefs[j,", i, "] ~ dnorm(traits.int[", i + 1, "] + inprod(traits[j,],traits.coefs[", i + 1, ",1:num.traits]),pow(trait.sigma[", i + 1, "],-2)) } "))
model_script <- c(model_script, paste0("\t traits.int[", i + 1, "] ~ ", prior.strings$p3))
for (l in which.traits[[i + 1]]) {
if (prior.control$ssvs.traitsindex[[i + 1]][which(which.traits[[i + 1]] == l)] == -1) {
model_script <- c(model_script, paste0("\t traits.coefs[", i + 1, ",", l, "] ~ ", prior.strings$p3, " ## Traits used for this X.coefs"))
}
if (prior.control$ssvs.traitsindex[[i + 1]][which(which.traits[[i + 1]] == l)] == 0) {
ssvs.prior.string <- paste0("dnorm(0,pow(", prior.control$hypparams[3], "*((1-ssvs.traitscoefs", i + 1, l, ")*", prior.control$ssvs.g, " + ssvs.traitscoefs", i + 1, l, "),-1)); ssvs.traitscoefs", i + 1, l, " ~ dbern(0.5)")
model_script <- c(model_script, paste0("\t traits.coefs[", i + 1, ",", l, "] ~ ", ssvs.prior.string, " ## Traits used for this X.coefs"))
}
}
if (length((1:num.traits)[-which.traits[[i + 1]]]) > 0) {
for (l in (1:num.traits)[-which.traits[[i + 1]]]) {
model_script <- c(model_script, paste0("\t traits.coefs[", i + 1, ",", l, "] <- 0 ## traits not used for this X.coefs"))
}
}
model_script <- c(model_script, paste0("\t trait.sigma[", i + 1, "] ~ ", prior.strings$p4, "\n"))
}
}
}
model_script <- c(model_script, paste0(""))
if (any(prior.control$ssvs.index > 0)) {
for (i in unique(prior.control$ssvs.index[prior.control$ssvs.index > 0])) {
model_script <- c(model_script, paste0("\t ssvs.gp", i, " ~ dbern(0.5)"))
}
}
}
# if(num.X > 0 & any(family == "multinom")) {
# model_script <- c(model_script, paste0("\t for(j in 1:",length(index_multinom_cols),") { for(i in 1:num.X) { X.multinom.params[j,i,1] <- 0 } } "))
# model_script <- c(model_script, paste0("\t for(j in 1:",length(index_multinom_cols),") { for(i in 1:num.X) { for(k in 2:num.multinom.levels) { X.multinom.params[j,i,k] ~ dnorm(0,",1/prior.control$hypparams[1],") } } } "))
# }
## Prior on dispersion parameters, controlled by prior.control$hypparams[4]
if (!all(complete_family %in% c("poisson", "binomial", "ordinal", "multinom", "exponential"))) { # "bernoulli"
model_script <- c(model_script, paste0("\t for(j in 1:p) { lv.coefs[j,num.lv+2] ~ ", prior.strings$p4, " } ## Dispersion parameters"))
}
model_script <- c(model_script, "\n\t }")
if (!is.null(model.name)) {
write(model_script, file = model.name)
}
if (is.null(model.name)) {
write(model_script, file = "jagsboralmodel.txt")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.