# Set up the environment
# remotes::install_github("energyandcleanair/creapuff", ref="main", dependencies=T, update=T)
# remotes::install_github("energyandcleanair/creahelpers")
# remotes::install_github("energyandcleanair/rcrea")
# devtools::reload(pkgload::inst("creapuff"))
require(raster)
require(sf)
require(tidyverse)
require(magrittr)
require(lubridate)
library(readxl)
#library(creapuff)
#list.files(path='R', full.names=T) %>% sapply(source)
require(rcrea)
require(creahelpers)
# Parameters ###################################################################
# ============================= Project specific ===============================
#project_dir="I:/SouthAfrica" # calpuff_external_data-2 persistent disk (project data)
project_dir="C:/Users/lauri/Desktop/My Drive/air pollution/TAPM/2017cases/SouthAfrica2022"
input_dir <- file.path(project_dir,"calpuff_suite") # Where to read all CALPUFF generated files
output_dir <- file.path(project_dir,"plots_MES") ; if (!dir.exists(output_dir)) dir.create(output_dir) # Where to write all HIA files
emissions_dir <- file.path(project_dir,"emissions")
#load grid parameters
calmet_result <- readRDS(file.path(input_dir,"calmet_result.RDS" ))
UTMZ <- calmet_result$params[[01]]$IUTMZN
UTMH <- calmet_result$params[[01]]$UTMHEM
# List generated csv files
input_dir <- file.path(project_dir,"calpuff_suite/MES_aggregated") # Where to read all CALPUFF generated files
calpuff_files <- get_calpuff_files(ext=".csv", gasunit = 'ppb', dir=input_dir, hg_scaling=1e-3) %>%
mutate(year=name %>% gsub('.*_', '', .) %>% force_numeric %>% add(2000))
grids = get_grids_calpuff(calpuff_files, UTMZ, UTMH, map_res=1)
#make tifs
calpuff_files %>% filter(!is.na(threshold), species != 'tpm10', year==2031) %>%
make_tifs(grids = grids, overwrite=T)
# Select tif data
calpuff_files_all <- get_calpuff_files(ext=".tif", gasunit = 'ug', dir=input_dir, hg_scaling=1e-3) %>%
mutate(year=name %>% gsub('.*_', '', .) %>% force_numeric %>% add(2000),
scenario=paste0(scenario, '_', year-2000),
scenario_description=case_when(grepl('eskom', scenario)~'Eskom plan',
grepl('bat', scenario)~'BAT',
grepl('compl', scenario)~'MES compliance',
grepl('delay', scenario)~'delayed compliance',
grepl('noimp', scenario)~'no improvements'),
title=make_titletxt(.) %>% gsub(' ?\n?from ', '', .),
subtitle=paste("In the", scenario_description, "scenario in", year),
subtitle_facets=paste0('in ', year, ', by scenario'))
emis_byyear_byplant <- file.path(emissions_dir, 'emissions scaling for scenarios_v2.csv') %>% read_csv %>%
mutate(calpuff_name = plant %>% substr(1,7) %>% tolower, scaling=emissions/modeled_emissions)
# ================================ General =====================================
gis_dir <- "~/GIS" # The folder where we store general GIS data
# creahia::set_env('gis_dir',"~/GIS/")
# Sys.setenv(gis_dir="~/GIS/")
#
# setwd(get_gis_dir())
# system("gsutil rsync -r gs://crea-data/gis .")
# Plots ########################################################################
target_crs <- crs(grids$gridR)
source('../creapuff/project_workflows/emissions_processing_SA.R')
point_sources %>% st_as_sf -> point_sources_to_plot
emis_byyear_byplant %>% group_by(plant) %>% filter(emissions>0) %>%
summarise(decommissioning_end=max(year)) -> decommissioning
getplants <- function(calpuff_files) {
point_sources_to_plot %>% left_join(decommissioning) %>%
filter(decommissioning_end>=unique(calpuff_files$year))
}
require(ggspatial); require(ggmap); require(ggrepel)
plot_bb = point_sources_to_plot %>% st_transform(crs=4326) %>% extent() %>% add(6)
basemap <- get_basemap(plot_bb, zoom=6)
plot_bb %>% as('SpatialPolygons') %>% st_as_sf %>% st_set_crs(4326) %>% st_transform(3857) -> plot_bb_polygon
ggmap(basemap) + layer_spatial(plot_bb_polygon, fill=NA, linewidth=2, color='red')
calpuff_files_all %>%
filter(year==2022) %>%
mutate(subtitle='in 2022') %>%
plot_contours(plot_bb=plot_bb,
contour_type='both',
#color_scale_basis_scenario='noimpr_31',
point_sources=point_sources_to_plot,
basemap=basemap,
label_sources=F,
output_dir=output_dir)
calpuff_files_all %>%
filter(year>2030, #period=='annual', species=='no2',
!grepl('no imp|delay', scenario_description)) %>%
mutate(subtitle=subtitle_facets,
scenario_description=factor(scenario_description, levels=c('Eskom plan', 'MES compliance', 'BAT'))) %>%
group_by(period, species, type, year) %>%
plot_contours(plot_bb=plot_bb,
contour_type='both',
point_sources=getplants,
basemap=basemap,
facet_by='scenario_description',
include_threshold_as_break=F,
label_contours = F,
contour_break_probs=c(0, .85,.95,.995),
label_sources=F,
output_dir=output_dir,
plot_dpi = 200, plot_width=10, plot_height = 5)
calpuff_files_all %>%
filter(year>2030) %>%
plot_contours(plot_bb=plot_bb,
contour_type='both',
point_sources=getplants,
basemap=basemap,
label_contours = F,
include_threshold_as_break = F,
label_sources=F,
output_dir=output_dir)
pop <- make_pop(grids = grids)
calpuff_files_all %>%
filter(!is.na(threshold), year==2031 | scenario_description=='Eskom plan') %>%
group_by(scenario, scenario_description, year, species, period, type, threshold, unit) %>%
group_modify(function(calpuff_files, group) {
message(group %>% select(scenario:period))
calpuff_files$path %>% raster -> r
tibble(pop=sum(pop[r>group$threshold], na.rm=T),
area_km2=area(r)[r>group$threshold] %>% sum,
max_value=max(r[]))
}) %>%
group_by(species, period, type) %>%
filter(max(pop)>0) -> exceedances
exceedances
raster('~/../Downloads/V5GL03.HybridPM25c_0p10.Global.201901-201912.nc') -> pm25
get_adm(3, 'low') %>% subset(NAME_3=='Lephalale') -> lepha_adm
point_sources %>% st_drop_geometry() %>% to_spdf %>% raster::extract(pm25, .)
# ==============================================================================
#get WDPA protected areas
grids_wdpa <- grids
grids_wdpa$gridR %<>% (function(x) {crop(x, extent(x)*.33)})
get_wdpa_for_grid(grids_wdpa) -> wdpa_areas
saveRDS(file.path(output_dir, 'WDPA areas.RDS'))
#output deposition results
calpuff_files_all %>% get_deposition_results(dir=output_dir, wdpa_areas=wdpa_areas) -> depo2
depo$by_landuse %>% filter(broad.cat != 'ocean') %>% group_by(pollutant, scenario, unit) %>% summarise(across(deposition, sum))
depo$into_protected_areas %>%
rename(wdpa_area=name) %>%
pivot_longer(-wdpa_area) %>%
mutate(species = name %>% gsub('_.*', '', .),
variable = name %>% gsub('.*_', '', .),
scenario = name %>% gsub('^[a-z]*_', '', .) %>% gsub('_.*', '', .)) ->
wdpa_depo
wdpa_depo %>% filter(scenario=='mnpp') %>% group_by(variable) %>% arrange(desc(value)) %>% slice_max(value, n=5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.