# Packages -----------------------------------------------
library(covid.ecdc.forecasts)
library(googledrive)
library(googlesheets4)
library(dplyr)
library(purrr)
library(tidyr)
library(data.table)
library(lubridate)
library(zoo)
library(scoringutils)
library(ggplot2)
library(here)
# Google sheets authentification -----------------------------------------------
google_auth()
spread_sheet <- "1g4OBCcDGHn_li01R8xbZ4PFNKQmV-SHSXFlv2Qv79Ks"
identification_sheet <- "1GJ5BNcN1UfAlZSkYwgr1-AxgsVA2wtwQ9bRwZ64ZXRQ"
# setup ------------------------------------------------------------------------
# - 1 as this is usually updated on a Tuesday
submission_date <- latest_weekday()
median_ensemble <- FALSE
# load data from Google Sheets -------------------------------------------------
ids <- try_and_wait(read_sheet(ss = identification_sheet, sheet = "ids"))
forecasts <- try_and_wait(read_sheet(ss = spread_sheet))
names_ids <- ids %>%
dplyr::select(c(forecaster_id, board_name)) %>%
unique()
delete_data <- TRUE
if (delete_data) {
# add forecasts to backup sheet
try_and_wait(sheet_append(ss = spread_sheet, sheet = "oldforecasts",
data = forecasts))
# delete data from sheet
cols <- data.frame(matrix(ncol = ncol(forecasts), nrow = 0))
names(cols) <- names(forecasts)
try_and_wait(write_sheet(data = cols, ss = spread_sheet,
sheet = "predictions"))
}
# obtain raw and filtered forecasts, save raw forecasts-------------------------
raw_forecasts <- forecasts %>%
mutate(forecast_date = as.Date(forecast_date),
submission_date = as.Date(submission_date))
# use only the latest forecast from a given forecaster
filtered_forecasts <- raw_forecasts %>%
# interesting question whether or not to include foracast_type here.
# if someone reconnecs and then accidentally resubmits under a different
# condition should that be removed or not?
group_by(forecaster_id, region) %>%
filter(forecast_time == max(forecast_time)) %>%
ungroup()
# replace forecast duration with exact data about forecast date and time
# define function to do this for raw and filtered forecasts
# seems like a duplicate - function for crowdforecastr?
replace_date_and_time <- function(forecasts) {
forecast_times <- forecasts %>%
group_by(forecaster_id, region) %>%
summarise(forecast_time = unique(forecast_time)) %>%
ungroup() %>%
arrange(forecaster_id, forecast_time) %>%
group_by(forecaster_id) %>%
mutate(forecast_duration = c(NA, diff(forecast_time))) %>%
ungroup()
forecasts <- inner_join(
forecasts, forecast_times,
by = c("forecaster_id", "region", "forecast_time")
) %>%
mutate(forecast_week = epiweek(forecast_date),
target_end_date = as.Date(target_end_date)) %>%
select(-forecast_time)
return(forecasts)
}
# replace time with duration and date with epiweek
raw_forecasts <- replace_date_and_time(raw_forecasts)
filtered_forecasts <- replace_date_and_time(filtered_forecasts)
# write raw forecasts
fwrite(raw_forecasts,
here("crowd-rt-forecast", "raw-forecast-data",
paste0(submission_date, "-raw-forecasts.csv")))
# draw samples from the distributions ------------------------------------------
draw_samples <- function(distribution, median, width, samples_per_person = 1000) {
num_samples <- samples_per_person
if (distribution == "log-normal") {
values <- exp(rnorm(
num_samples, mean = log(as.numeric(median)), sd = as.numeric(width))
)
} else if (distribution == "normal") {
values <- rnorm(
num_samples, mean = (as.numeric(median)), sd = as.numeric(width)
)
} else if (distribution == "cubic-normal") {
values <- (rnorm(
num_samples, mean = (as.numeric(median) ^ (1 / 3)), sd = as.numeric(width)
)) ^ 3
} else if (distribution == "fifth-power-normal") {
values <- (rnorm(
num_samples, mean = (as.numeric(median) ^ (1 / 5)), sd = as.numeric(width)
)) ^ 5
} else if (distribution == "seventh-power-normal") {
values <- (rnorm(
num_samples, mean = (as.numeric(median) ^ (1 / 7)), sd = as.numeric(width)
)) ^ 7
}
out <- list(sort(values))
return(out)
}
n_people <- filtered_forecasts %>%
group_by(region) %>%
summarise(n_ids = length(unique(forecaster_id))) %>%
pull(n_ids) %>%
min()
# draw samples
forecast_samples <- filtered_forecasts %>%
rename(location = region) %>%
select(forecaster_id, location, target_end_date, submission_date,
distribution, median, width) %>%
arrange(forecaster_id, location, target_end_date) %>%
rowwise() %>%
mutate(
value = draw_samples(median = median, width = width,
distribution = distribution,
samples_per_person = 1000),
sample = list(seq_len(length(value)))
) %>%
unnest(cols = c(sample, value)) %>%
ungroup() %>%
select(forecaster_id, location, target_end_date, submission_date,
sample, value) %>%
arrange(forecaster_id, location, target_end_date, sample)
# interpolate missing days
# I'm pretty sure the horizon time indexing is currently wrong.
dates <- unique(forecast_samples$target_end_date)
date_range <- seq(min(as.Date(min(dates))),
max(as.Date(max(dates))), by = "days")
submission_date <- unique(forecast_samples$submission_date)
forecaster_ids <- unique(forecast_samples$forecaster_id)
n_samples <- max(forecast_samples$sample)
helper_data <- expand.grid(target_end_date = date_range,
forecaster_id = forecaster_ids,
location = locations$location_name,
submission_date = submission_date,
sample = 1:n_samples)
forecast_samples_daily <- forecast_samples %>%
mutate(target_end_date = as.Date(target_end_date)) %>%
full_join(helper_data) %>%
arrange(forecaster_id, location, sample, target_end_date) %>%
group_by(forecaster_id, location, sample) %>%
mutate(no_predictions = ifelse(all(is.na(value)), TRUE, FALSE)) %>%
filter(!no_predictions) %>%
mutate(value = na.approx(value))
forecast_samples_daily <- dplyr::left_join(
forecast_samples_daily,
names_ids,
by = "forecaster_id"
)
# save forecasts in quantile-format
fwrite(forecast_samples_daily %>%
mutate(submission_date = submission_date,
target_type = "case"),
here("crowd-rt-forecast", "forecast-sample-data",
paste0(submission_date, "-forecast-sample-data.csv")))
# check results and plot
check <- forecast_samples_daily %>%
rename(prediction = value) %>%
sample_to_quantile() %>%
mutate(target_end_date = as.Date(target_end_date))
plot <- plot_predictions(
check %>% mutate(true_value = NA_real_,
target_end_date = as.Date(target_end_date, origin = "1970-01-01")),
x = "target_end_date",
facet_formula = ~ forecaster_id + location
)
plot_dir <- here("crowd-rt-forecast", "data", "plots", submission_date)
check_dir(plot_dir)
ggsave(file.path(plot_dir, "rt.png"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.