#' @title Create a `forecast` object for ordinal forecasts
#' @inherit as_forecast_doc_template params description
#' @details
#' Ordinal forecasts are a form of categorical forecasts and represent a
#' generalisation of binary forecasts to multiple outcomes. The possible
#' outcomes that the observed values can assume are ordered.
#'
#' # Required input
#'
#' The input needs to be a data.frame or similar with the following columns:
#' - `observed`: Column with observed values of type `factor` with N ordered
#' levels, where N is the number of possible outcomes.
#' The levels of the factor represent the possible outcomes that
#' the observed values can assume.
#' - `predicted`: `numeric` column with predicted probabilities. The values
#' represent the probability that the observed value is equal to the factor
#' level denoted in `predicted_label`. Note that forecasts must be complete,
#' i.e. there must be a probability assigned to every possible outcome and
#' those probabilities must sum to one.
#' - `predicted_label`: `factor` with N levels, denoting the outcome that the
#' probabilities in `predicted` correspond to.
#'
#' For convenience, we recommend an additional column `model` holding the name
#' of the forecaster or model that produced a prediction, but this is not
#' strictly necessary.
#'
#' See the [example_ordinal] data set for an example.
#' @inheritSection forecast_types Forecast unit
#' @param predicted_label (optional) Name of the column in `data` that denotes
#' the outcome to which a predicted probability corresponds to.
#' This column will be renamed to "predicted_label".
#' @returns A `forecast` object of class `forecast_ordinal`
#' @family functions to create forecast objects
#' @keywords as_forecast
#' @export
#' @examples
#' as_forecast_ordinal(
#' na.omit(example_ordinal),
#' predicted = "predicted",
#' forecast_unit = c("model", "target_type", "target_end_date",
#' "horizon", "location")
#' )
as_forecast_ordinal <- function(data,
forecast_unit = NULL,
observed = NULL,
predicted = NULL,
predicted_label = NULL) {
assert_character(predicted_label, len = 1, null.ok = TRUE)
assert_subset(predicted_label, names(data), empty.ok = TRUE)
if (!is.null(predicted_label)) {
setnames(data, old = predicted_label, new = "predicted_label")
}
data <- as_forecast_generic(data, forecast_unit, observed, predicted)
data <- new_forecast(data, "forecast_ordinal")
assert_forecast(data)
return(data)
}
#' @export
#' @keywords check-forecasts
#' @importFrom checkmate assert_names assert_set_equal test_set_equal assert_factor
assert_forecast.forecast_ordinal <- function(
forecast, forecast_type = NULL, verbose = TRUE, ...
) {
forecast <- assert_forecast_generic(forecast, verbose)
assert(check_columns_present(forecast, "predicted_label"))
assert_names(
colnames(forecast),
disjunct.from = c("sample_id", "quantile_level")
)
assert_forecast_type(forecast, actual = "ordinal", desired = forecast_type)
assert_factor(forecast$observed, ordered = TRUE)
assert_factor(forecast$predicted_label, ordered = TRUE)
observed_levels <- levels(forecast$observed)
predicted_label_levels <- levels(forecast$predicted_label)
if (!identical(predicted_label_levels, observed_levels)) {
cli_abort(
"Levels of `predicted_label` and `observed` must be identical
and in the same order. Found levels {.val {predicted_label_levels}}
and {.val {observed_levels}}."
)
}
# forecasts need to be complete
forecast_unit <- get_forecast_unit(forecast)
complete <- as.data.table(forecast)[, .(
correct = test_set_equal(as.character(predicted_label), observed_levels)
), by = forecast_unit]
if (!all(complete$correct)) {
first_issue <- complete[(correct), ..forecast_unit][1]
first_issue <- lapply(first_issue, FUN = as.character)
#nolint start: keyword_quote_linter object_usage_linter duplicate_argument_linter
issue_location <- paste(names(first_issue), "==", first_issue)
cli_abort(
c(`!` = "Found incomplete forecasts",
`i` = "For an ordinal forecast, all possible outcomes must be assigned
a probability explicitly.",
`i` = "Found first missing probabilities in the forecast identified by
{.emph {issue_location}}")
)
#nolint end
}
return(forecast[])
}
#' @export
#' @rdname is_forecast
is_forecast_ordinal <- function(x) {
inherits(x, "forecast_ordinal") && inherits(x, "forecast")
}
#' @importFrom stats na.omit
#' @importFrom data.table setattr
#' @rdname score
#' @export
score.forecast_ordinal <- function(forecast, metrics = get_metrics(forecast), ...) {
forecast <- clean_forecast(forecast, copy = TRUE, na.omit = TRUE)
forecast_unit <- get_forecast_unit(forecast)
metrics <- validate_metrics(metrics)
forecast <- as.data.table(forecast)
# transpose the forecasts that belong to the same forecast unit
# make sure the labels and predictions are ordered in the same way
f_transposed <- forecast[, .(
predicted = list(predicted[order(predicted_label)]),
observed = unique(observed)
), by = forecast_unit]
observed <- f_transposed$observed
predicted <- do.call(rbind, f_transposed$predicted)
predicted_label <- sort(unique(forecast$predicted_label, na.last = TRUE))
f_transposed[, c("observed", "predicted") := NULL]
scores <- apply_metrics(
f_transposed, metrics,
observed, predicted, predicted_label, ...
)
scores <- as_scores(scores, metrics = names(metrics))
return(scores[])
}
#' Get default metrics for nominal forecasts
#' @inheritParams get_metrics.forecast_binary
#' @description
#' For ordinal forecasts, the default scoring rules are:
#' - "log_score" = [logs_categorical()]
#' - "rps" = [rps_ordinal()]
#' @export
#' @family get_metrics functions
#' @keywords handle-metrics
#' @examples
#' get_metrics(example_ordinal)
get_metrics.forecast_ordinal <- function(x, select = NULL, exclude = NULL, ...) {
all <- list(
log_score = logs_categorical,
rps = rps_ordinal
)
select_metrics(all, select, exclude)
}
#' Ordinal example data
#'
#' A data set with predictions for COVID-19 cases and deaths submitted to the
#' European Forecast Hub.
#'
#' The data was created using the script create-example-data.R in the inst/
#' folder (or the top level folder in a compiled package).
#'
#' @format An object of class `forecast_ordinal`
#' (see [as_forecast_ordinal()]) with the following columns:
#' \describe{
#' \item{location}{the country for which a prediction was made}
#' \item{target_end_date}{the date for which a prediction was made}
#' \item{target_type}{the target to be predicted (cases or deaths)}
#' \item{observed}{Numeric: observed values}
#' \item{location_name}{name of the country for which a prediction was made}
#' \item{forecast_date}{the date on which a prediction was made}
#' \item{predicted_label}{outcome that a probabilty corresponds to}
#' \item{predicted}{predicted value}
#' \item{model}{name of the model that generated the forecasts}
#' \item{horizon}{forecast horizon in weeks}
#' }
# nolint start
#' @source \url{https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/}
# nolint end
"example_ordinal"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.