# NOTE: the interval range format is only used internally.
#' @title Assert that inputs are correct for interval-based forecast
#' @description
#' Function assesses whether the inputs correspond to the
#' requirements for scoring interval-based forecasts.
#' @param lower Input to be checked. Should be a numeric vector of size n that
#' holds the predicted value for the lower bounds of the prediction intervals.
#' @param upper Input to be checked. Should be a numeric vector of size n that
#' holds the predicted value for the upper bounds of the prediction intervals.
#' @param interval_range Input to be checked. Should be a vector of size n that
#' denotes the interval range in percent. E.g. a value of 50 denotes a
#' (25%, 75%) prediction interval.
#' @importFrom cli cli_warn cli_abort
#' @inherit document_assert_functions params return
#' @keywords internal_input_check
assert_input_interval <- function(observed, lower, upper, interval_range) {
assert(check_numeric_vector(observed, min.len = 1))
n <- length(observed)
assert(check_numeric_vector(lower, len = n))
assert(check_numeric_vector(upper, len = n))
assert(
check_numeric_vector(interval_range, len = 1, lower = 0, upper = 100),
check_numeric_vector(interval_range, len = n, lower = 0, upper = 100)
)
diff <- upper - lower
diff <- diff[!is.na(diff)]
if (any(diff < 0)) {
cli_abort(
c(
"!" = "All values in `upper` need to be greater than or equal to
the corresponding values in `lower`"
)
)
}
if (any(interval_range > 0 & interval_range < 1, na.rm = TRUE)) {
#nolint start: keyword_quote_linter
cli_warn(
c(
"!" = "Found interval ranges between 0 and 1. Are you sure that's
right? An interval range of 0.5 e.g. implies a (49.75%, 50.25%)
prediction interval.",
"i" = "If you want to score a (25%, 75%) prediction interval, set
`interval_range = 50`."
),
.frequency = "once",
.frequency_id = "small_interval_range"
)
#nolint end
}
return(invisible(NULL))
}
#' @title Check that inputs are correct for interval-based forecast
#' @inherit assert_input_interval params description
#' @inherit check_input_sample return description
#' @keywords internal_input_check
check_input_interval <- function(observed, lower, upper, interval_range) {
result <- check_try(
assert_input_interval(observed, lower, upper, interval_range)
)
return(result)
}
#' @title Interval score
#'
#' @description
#' Proper Scoring Rule to score quantile predictions, following Gneiting
#' and Raftery (2007). Smaller values are better.
#'
#' The score is computed as
#'
#' \deqn{
#' \textrm{score} = (\textrm{upper} - \textrm{lower}) + \frac{2}{\alpha}(\textrm{lower}
#' - \textrm{observed}) *
#' \mathbf{1}(\textrm{observed} < \textrm{lower}) +
#' \frac{2}{\alpha}(\textrm{observed} - \textrm{upper}) *
#' \mathbf{1}(\textrm{observed} > \textrm{upper})
#' }{
#' score = (upper - lower) + 2/alpha * (lower - observed) *
#' 1(observed < lower) + 2/alpha * (observed - upper) *
#' 1(observed > upper)
#' }
#' where \eqn{\mathbf{1}()}{1()} is the indicator function and
#' indicates how much is outside the prediction interval.
#' \eqn{\alpha}{alpha} is the decimal value that indicates how much is outside
#' the prediction interval.
#'
#' To improve usability, the user is asked to provide an interval range in
#' percentage terms, i.e. interval_range = 90 (percent) for a 90 percent
#' prediction interval. Correspondingly, the user would have to provide the
#' 5% and 95% quantiles (the corresponding alpha would then be 0.1).
#' No specific distribution is assumed, but the interval has to be symmetric
#' around the median (i.e you can't use the 0.1 quantile
#' as the lower bound and the 0.7 quantile as the upper bound).
#' Non-symmetric quantiles can be scored using the function [quantile_score()].
#'
#' @param lower Vector of size n with the prediction for the lower quantile
#' of the given interval range.
#' @param upper Vector of size n with the prediction for the upper quantile
#' of the given interval range.
#' @param interval_range Numeric vector (either a single number or a vector of
#' size n) with the range of the prediction intervals. For example, if you're
#' forecasting the 0.05 and 0.95 quantile, the interval range would be 90.
#' The interval range corresponds to \eqn{(100-\alpha)/100}, where
#' \eqn{\alpha}{alpha} is the decimal value that indicates how much is outside
#' the prediction interval (see e.g. Gneiting and Raftery (2007)).
#' @param separate_results Logical. If `TRUE` (default is `FALSE`), then the
#' separate parts of the interval score (dispersion penalty, penalties for
#' over- and under-prediction get returned as separate elements of a list).
#' If you want a `data.frame` instead, simply call [as.data.frame()] on the
#' output.
#' @param weigh Logical. If `TRUE` (the default), weigh the score by
#' \eqn{\alpha / 2}, so it can be averaged into an interval score that, in
#' the limit (for an increasing number of equally spaced quantiles/prediction
#' intervals), corresponds
#' to the CRPS. \eqn{\alpha} is the value that corresponds to the
#' (\eqn{\alpha/2}) or (\eqn{1 - \alpha/2}), i.e. it is the decimal
#' value that represents how much is outside a central prediction interval
#' (E.g. for a 90 percent central prediction interval, alpha is 0.1).
#' @return
#' Vector with the scoring values, or a list with separate entries if
#' `separate_results` is `TRUE`.
#' @inheritParams ae_median_sample
#' @examples
#' observed <- rnorm(30, mean = 1:30)
#' interval_range <- rep(90, 30)
#' alpha <- (100 - interval_range) / 100
#' lower <- qnorm(alpha / 2, rnorm(30, mean = 1:30))
#' upper <- qnorm((1 - alpha / 2), rnorm(30, mean = 11:40))
#'
#' scoringutils:::interval_score(
#' observed = observed,
#' lower = lower,
#' upper = upper,
#' interval_range = interval_range
#' )
#'
#' # gives a warning, as the interval_range should likely be 50 instead of 0.5
#' scoringutils:::interval_score(
#' observed = 4, upper = 8, lower = 2, interval_range = 0.5
#' )
#'
#' # example with missing values and separate results
#' scoringutils:::interval_score(
#' observed = c(observed, NA),
#' lower = c(lower, NA),
#' upper = c(NA, upper),
#' separate_results = TRUE,
#' interval_range = 90
#' )
#' @keywords metric
#' @references Strictly Proper Scoring Rules, Prediction,and Estimation,
#' Tilmann Gneiting and Adrian E. Raftery, 2007, Journal of the American
#' Statistical Association, Volume 102, 2007 - Issue 477
#'
#' Evaluating epidemic forecasts in an interval format,
#' Johannes Bracher, Evan L. Ray, Tilmann Gneiting and Nicholas G. Reich,
#' <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618> # nolint
interval_score <- function(observed,
lower,
upper,
interval_range,
weigh = TRUE,
separate_results = FALSE) {
assert_input_interval(observed, lower, upper, interval_range)
# calculate alpha from the interval range
alpha <- (100 - interval_range) / 100
# calculate three components of WIS
dispersion <- (upper - lower)
overprediction <-
2 / alpha * (lower - observed) * as.numeric(observed < lower)
underprediction <-
2 / alpha * (observed - upper) * as.numeric(observed > upper)
if (weigh) {
dispersion <- dispersion * alpha / 2
underprediction <- underprediction * alpha / 2
overprediction <- overprediction * alpha / 2
}
score <- dispersion + underprediction + overprediction
if (separate_results) {
return(list(
interval_score = score,
dispersion = dispersion,
underprediction = underprediction,
overprediction = overprediction
))
} else {
return(score)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.