#' Estimate the inflation factor for a distribution of P-values
#'
#' NOTE: This is copied (with slight modifications) from the now-defunct GenABEL
#' package. The original 'KS' method has been removed as it had many internal
#' GenABEL dependencies. All credit goes to the function author Yurii Aulchenko.
#'
#' Estimate the inflation factor for a distribution of P-values or 1df
#' chi-square test. The major use of this procedure is the Genomic Control, but
#' can also be used to visualise the distribution of P-values coming from other
#' tests. Methods implemented include 'median' (median(chi2)/0.455...),
#' regression (of observed onto expected) and 'KS' (optimizing the
#' chi2.1df distribution fit by use of Kolmogorov-Smirnov test)
#'
#' @param data A vector of reals. If all are <=1, it is assumed that this is a
#' vector of P-values, else it is treated as a vector of chi-squares
#' @param plot Whether the plot should be shown or not (default).
#' @param proportion The proportion of lowest P (or
#' \eqn{\chi^2}{chi^2}) values to be used when estimating the inflation
#' factor \eqn{\lambda}{lambda}.
#' @param method "regression" (default), "median", or "KS": method to
#' be used for \eqn{\lambda}{lambda} estimation.
#' @param filter if the test statistics with 0-value of
#' \eqn{\chi^2}{chi^2} should be excluded prior to estimation of
#' \eqn{\lambda}{lambda}.
#' @param df Number of degrees of freedom.
#' @param ... arguments passed to the \code{\link{plot}} function.
#' @return A list with elements
#' \item{estimate}{Estimate of \eqn{\lambda}{lambda}}
#' \item{se}{Standard error of the estimate}
#' @author Yurii Aulchenko
#' @importFrom graphics abline par
#' @importFrom stats median ppoints qchisq
#' @export
estlambda <- function(data, plot = FALSE, proportion = 1, method = "regression",
filter = TRUE, df = 1, ...) {
data <- data[which(!is.na(data))]
if (proportion > 1 || proportion <= 0)
stop("proportion argument should be greater then zero and less than or equal to one")
ntp <- round(proportion * length(data))
if (ntp < 1) {
stop("no valid measurements")
}
if (ntp == 1) {
warning(paste("One measurement, lambda = 1 returned"))
return(list(estimate = 1, se = 999.99))
}
if (ntp < 10) {
warning(paste("number of points is too small:", ntp))
}
if (min(data) < 0) {
stop("data argument has values <0")
}
if (max(data) <= 1) {
# lt16 <- (data < 1.e-16) if (any(lt16)) { warning(paste('Some probabilities <
# 1.e-16; set to 1.e-16')) data[lt16] <- 1.e-16 }
data <- qchisq(data, 1, lower.tail = FALSE)
}
if (filter) {
data[which(abs(data) < 1e-08)] <- NA
}
data <- sort(data)
ppoi <- ppoints(data)
ppoi <- sort(qchisq(ppoi, df = df, lower.tail = FALSE))
data <- data[1:ntp]
ppoi <- ppoi[1:ntp]
# s <- summary(lm(data~offset(ppoi)))$coeff bug fix thanks to Franz Quehenberger
out <- list()
if (method == "regression") {
s <- summary(lm(data ~ 0 + ppoi))$coeff
out$estimate <- s[1, 1]
out$se <- s[1, 2]
} else if (method == "median") {
out$estimate <- median(data, na.rm = TRUE) / qchisq(0.5, df)
out$se <- NA
} else {
stop("'method' should be either 'regression' or 'median'!")
}
if (plot) {
lim <- c(0, max(data, ppoi, na.rm = TRUE))
# plot(ppoi,data,xlim=lim,ylim=lim,xlab='Expected',ylab='Observed', ...)
oldmargins <- par()$mar
par(mar = oldmargins + 0.2)
plot(ppoi, data, xlab = expression("Expected " ~ chi^2), ylab = expression("Observed " ~
chi^2), ...)
abline(a = 0, b = 1)
abline(a = 0, b = out$estimate, col = "red")
par(mar = oldmargins)
}
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.