This vignette shows how to use tidyqpcr functions to normalize and plot data from multifactorial experiments: many primer sets, many conditions, two plates. This vignette is a more advanced example with complex data.
This is real RT-qPCR data by Edward Wallace in June 2018, testing the effect of heat shock and transcription-targeting drugs in Saccharomyces cerevisiae yeast.
Do standard transcriptional inhibitors phenanthroline and thiolutin block the transcriptional heat shock response in yeast? This is a genuine question because some papers that argue that phenanthroline and thiolutin induce the transcriptional heat shock response.
Measure 16 primer sets: HOR7, HSP12, HSP26, HSP78, HSP104, RTC3, SSA4, PGK1, ALG9, HHT2, HTB2, RPS3, RPS13, RPS15, RPS30A, RPL39.
Test 6 conditions. That's 3 transcriptional inhibitors (no drug control, 150ug/mL 1,10-phenanthroline, 3ug/mL thiolutin) in each of 2 conditions (- heat shock control, + heat shock 42C 10min), 2 biol reps each:
- *C-* Control -heat - *P-* Phenanthroline -heat - *T-* Thiolutin -heat - *C+* Control +heat - *P+* Phenanthroline +heat - *T+* Thiolutin +heat
# knitr options for report generation knitr::opts_chunk$set( warning = FALSE, message = FALSE, echo = TRUE, cache = FALSE, results = "show" ) # Load packages library(tidyr) library(ggplot2) library(dplyr) library(tidyqpcr) # set default theme for graphics theme_set(theme_bw(base_size = 11) %+replace% theme( strip.background = element_blank() ))
Reverse transcription by random primers mixed with oligo-dT.
# list target_ids of primer sets target_id_levels <- c( "HOR7", "HSP12", "HSP26", "HSP78", "HSP104", "RTC3", "SSA4", "PGK1", "ALG9", " HHT2", "HTB2", "RPS3", "RPS13", "RPS15", "RPS30A", "RPL39" ) rowkey <- tibble( well_row = LETTERS[1:16], target_id = factor(target_id_levels, levels = target_id_levels) ) # Set up experimental samples heat_levels <- c("-", "+") heat_values <- factor(rep(heat_levels, each = 3), levels = heat_levels) drug_levels <- c("C", "P", "T") drug_values <- factor(rep(drug_levels, times = 2), levels = drug_levels) condition_levels <- paste0(drug_levels, rep(heat_levels, each = 3)) condition_values <- factor(condition_levels, levels = condition_levels) colkey <- create_colkey_6_in_24( heat = heat_values, drug = drug_values, condition = condition_values ) plateplan <- label_plate_rowcol( create_blank_plate(well_row = LETTERS[1:16], well_col = 1:24), rowkey, colkey )
Display the plate plan using display_plate_qpcr.
display_plate_qpcr(plateplan |> mutate(sample_id = condition))
Note that display_plate_qpcr requires a column called sample_id
, which here we had to make from the condition
variable using mutate(sample_id=condition)
. The reason for doing this is that we have replicate samples of the same condition in different plates, and so we assign the unique sample name for each replicate after loading the plates together using unite
in the next code chunk.
# read my plate data, one at a time, with biol_rep and plate number # NOTE: system.file() accesses data from this R package # To use your own data, remove the call to system.file(), # instead pass your data's filename to read_lightcycler_1colour_cq() # or to another relevant read_ function file_path_cq_plate1 <- system.file("extdata", "Edward_qPCR_TxnInhibitors_HS_2018-06-15_plate1_Cq.txt.gz", package = "tidyqpcr") plate1 <- file_path_cq_plate1 |> read_lightcycler_1colour_cq() |> left_join(plateplan, by = "well") |> mutate(biol_rep = "1", plate = "1") file_path_cq_plate2 <- system.file("extdata", "Edward_qPCR_TxnInhibitors_HS_2018-06-15_plate2_Cq.txt.gz", package = "tidyqpcr") plate2 <- file_path_cq_plate2 |> read_lightcycler_1colour_cq() |> left_join(plateplan, by = "well") |> mutate(biol_rep = "2", plate = "2") # combine data from both plates into a single data frame plates <- bind_rows(plate1, plate2) |> unite(sample_id, condition, biol_rep, sep = "", remove = FALSE) summary(plates)
ggplot(data = plates) + geom_point(aes(x = target_id, y = cq, shape = condition, colour = condition), position = position_jitter(width = 0.2, height = 0) ) + labs( y = "Cycle count to threshold", title = "All reps, unnormalized" ) + scale_shape_manual(values = c(15:18, 5:6)) + facet_grid(biol_rep ~ prep_type) + theme( axis.text.x = element_text(angle = 90, vjust = 0.5), panel.border = element_rect( fill = NA, linetype = 1, colour = "grey50", size = 0.5 ) )
platesnorm <- plates |> filter(prep_type == "+RT") |> calculate_deltacq_bysampleid(ref_target_ids = "PGK1") platesmed <- platesnorm |> group_by(sample_id, condition, biol_rep, heat, drug, target_id) |> summarize( delta_cq = median(delta_cq, na.rm = TRUE), rel_abund = median(rel_abund, na.rm = TRUE) ) filter(platesmed, target_id == "HSP26")
ggplot(data = platesnorm) + geom_point(aes(x = target_id, y = delta_cq, shape = condition, colour = condition), position = position_jitter(width = 0.2, height = 0) ) + labs(y = "Cq relative to PGK1") + scale_shape_manual(values = c(15:18, 5:6)) + facet_grid(biol_rep ~ .) + theme( axis.text.x = element_text(angle = 90, vjust = 0.5), panel.border = element_rect( fill = NA, linetype = 1, colour = "grey50", size = 0.5 ) )
This plot shows all the summarized data on the same axes, but it is hard to pick out the different conditions by eye.
ggplot(data = platesmed) + geom_point(aes(x = target_id, y = rel_abund, shape = biol_rep, colour = condition), position = position_jitter(width = 0.2, height = 0) ) + scale_shape_manual(values = c(15:18, 5:6)) + scale_y_log10("mRNA relative detection", labels = scales::label_number()) + theme(axis.text.x = element_text(angle = 90, vjust = 0.5))
This plot shows all the summarized data "faceted" on different axes for different drug treatments. It highlights that, for example, SSA4 detection increases in response to heat in all drug treatments.
ggplot(data = platesmed) + geom_point(aes(x = target_id, y = rel_abund, shape = biol_rep, colour = heat), position = position_jitter(width = 0.2, height = 0) ) + facet_wrap(~drug, ncol = 3) + scale_colour_manual(values = c("-" = "grey50", "+" = "red")) + scale_y_log10("mRNA relative detection", labels = scales::label_number()) + theme(axis.text.x = element_text(angle = 90, vjust = 0.5))
By contrast, this plot shows all the summarized data "faceted" on different axes for different conditions. This shows that there is no clear response to the drug treatments in either condition.
ggplot(data = platesmed) + geom_point(aes(x = target_id, y = rel_abund, shape = biol_rep, colour = drug), position = position_jitter(width = 0.2, height = 0) ) + facet_wrap(~heat, ncol = 3) + scale_y_log10("mRNA relative detection", labels = scales::label_number()) + theme(axis.text.x = element_text(angle = 90, vjust = 0.5))
# NOTE: system.file() accesses data from this R package # To use your own data, remove the call to system.file(), # instead pass your data's filename to read_lightcycler_1colour_cq() # or to another relevant read_ function file_path_raw_plate1 <- system.file("extdata/Edward_qPCR_TxnInhibitors_HS_2018-06-15_plate1.txt.gz", package = "tidyqpcr") plate1curve <- file_path_raw_plate1 |> read_lightcycler_1colour_raw() |> debaseline() |> left_join(plateplan, by = "well") |> mutate(biol_rep = 1, plate = 1) file_path_raw_plate2 <- system.file("extdata/Edward_qPCR_TxnInhibitors_HS_2018-06-15_plate2.txt.gz", package = "tidyqpcr") plate2curve <- file_path_raw_plate2 |> read_lightcycler_1colour_raw() |> debaseline() |> left_join(plateplan, by = "well") |> mutate(biol_rep = 2, plate = 2) platesamp <- bind_rows(plate1curve, plate2curve) |> filter(program_no == 2) platesmelt <- bind_rows(plate1curve, plate2curve) |> filter(program_no == 3) |> calculate_drdt_plate() |> filter(temperature >= 61)
ggplot( data = platesmelt |> filter(tech_rep == 1, biol_rep == 1), aes(x = temperature, y = dRdT, linetype = prep_type) ) + facet_grid(condition ~ target_id) + geom_line() + scale_linetype_manual(values = c("-RT" = "dashed", "+RT" = "solid")) + scale_x_continuous(breaks = seq(60, 100, 10), minor_breaks = seq(60, 100, 5)) + labs(title = "Melt curves, biol. rep. 1, tech. rep. 1") + theme(panel.grid = element_blank())
ggplot( data = platesmelt |> filter(tech_rep == 1, biol_rep == 2), aes(x = temperature, y = dRdT, linetype = prep_type) ) + facet_grid(condition ~ target_id) + geom_line() + scale_linetype_manual(values = c("-RT" = "dashed", "+RT" = "solid")) + scale_x_continuous(breaks = seq(60, 100, 10), minor_breaks = seq(60, 100, 5)) + labs(title = "Melt curves, biol. rep. 2, tech. rep. 1") + theme(panel.grid = element_blank())
ggplot( data = platesamp |> filter(tech_rep == 1, biol_rep == 1), aes(x = cycle, y = fluor_signal, linetype = prep_type) ) + facet_grid(condition ~ target_id) + geom_line() + scale_linetype_manual(values = c("-RT" = "dashed", "+RT" = "solid")) + expand_limits(y = 0) + labs(title = "Amp. curves, biol. rep. 1, tech. rep. 1") + theme(panel.grid = element_blank())
ggplot( data = platesamp |> filter(tech_rep == 1, biol_rep == 2), aes(x = cycle, y = fluor_signal, linetype = prep_type) ) + facet_grid(condition ~ target_id) + geom_line() + scale_linetype_manual(values = c("-RT" = "dashed", "+RT" = "solid")) + expand_limits(y = 0) + labs(title = "Amp. curves, biol. rep. 2, tech. rep. 1") + theme(panel.grid = element_blank())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.