Description Usage Details See Also Examples
Retrieve or recreate MCMC samples used in scan.pdf document.
1 2 |
Both calls to data
create qb
objects names qbSim
.
See vignette scan.pdf
or see scan.Rnw
in doc folder of package.
qb.genoprob
, qb.mcmc
, qb.sim.cross
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | data(qbSimMain)
summary(qbSim)
data(qbSimEpi)
summary(qbSim)
## Not run:
## Setup for Simulated Data used in scan.pdf.
n.ind <- 100 ## number of individuals
n.mark <- 200 ## number of markers
by.mark <- 1 ## cM spacing between markers
qtl.positions <- n.mark / 2 ## position of QTL
markers <- seq(0, n.mark, by = by.mark)
names(markers) <- paste("M", markers, sep = "")
sim.map <- list(ch1 = markers)
sim.model <- matrix(c(1, qtl.positions, qtl.effect / 2), 1, 3)
colnames(sim.model) <- c("chromosome","qtl-position","effect-size")
n.iter <- 1000 ## number of iterations for MCMC
qb.random.seed <- 1626 ## random seed for MCMC
## Genetic architecture for scan simulations: 3 QTL.
qtl.positions <- rbind(qtl1 = c(chromosome = 1, locus = 5),
qtl2 = c(chromosome = 1, locus = 50),
qtl3 = c(chromosome = 2, locus = 33) )
qtl.positions
qtl.main.model <-
rbind(qtl1.main.effect = c(qtl = 1, main.effect.size = 0),
qtl2.main.effect = c(qtl = 2, main.effect.size = 0),
qtl3.main.effect = c(qtl = 3, main.effect.size = 0))
qtl.main.model
qtl.epi.model <- rbind(qtl1.and.qtl3.epi.effect =
c(qtl1 = 1, qtl2 = 3, epi.effect.size = 10))
qtl.epi.model
## SimEpi
set.seed(1234)
sim <- qb.sim.cross(len = rep(100, 2), n.mar = 10, eq.spacing = TRUE,
n.ind = 100, type = "bc", missing.geno = 0.03,
qtl.pos = qtl.positions,
qtl.main = qtl.main.model,
qtl.epis = qtl.epi.model)
sim <- qb.genoprob(sim)
qbSim <- qb.mcmc(sim, n.iter = n.iter, verbose = FALSE, n.thin = 40,
seed = qb.random.seed)
## The next line saves qbSim as an external binary file.
save("qbSim", file = "qbSimEpi.RData")
## SimMain
qtl.main.model[2, "main.effect.size"] = 10
set.seed(1234)
sim <- qb.sim.cross(len = rep(100, 2), n.mar = 10, eq.spacing = TRUE,
n.ind = 100, type = "bc", missing.geno = 0.03,
qtl.pos = qtl.positions,
qtl.main = qtl.main.model,
qtl.epis = NULL)
## After the data is simulated call qb.genoprob to fill in
## missing data.
sim <- qb.genoprob(sim, step = 2)
## Call qb.mcmc and then analysis code.
qbSim <- qb.mcmc(sim, n.iter = n.iter, verbose = FALSE, n.thin = 40,
seed = qb.random.seed)
## The next line saves qbSim as an external binary file.
save("qbSim", file = "qbSimMain.RData")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.