#' Population in Norway (2020 borders).
#'
#' We conveniently package population data taken from Statistics Norway.
#' This data is licensed under the Norwegian License for
#' Open Government Data (NLOD) 2.0.
#'
#' This dataset contains national/county/municipality/ward (city district) level population data
#' for every age (0 to 105 years old). The national level data is from year 1846, while all the
#' other levels have data from 2005.
#'
#' The counties and municipalities are updated for the 2020 borders.
#'
#' @format
#' \describe{
#' \item{year}{Year.}
#' \item{location_code}{The location code.}
#' \item{granularity_geo}{National/County/Municipality/BAregion.}
#' \item{age}{1 year ages from 0 to 105.}
#' \item{sex}{male/female}
#' \item{pop_jan1}{Number of people as of 1st of January.}
#' \item{imputed}{FALSE if real data. TRUE if it is the last real data point carried forward.}
#' }
#' @source \url{https://www.ssb.no/en/statbank/table/07459/tableViewLayout1/}
"norway_population_by_age_sex_b2020"
norway_population_by_age_sex_b2020_cats <- function(cats=NULL){
stopifnot(is.list(cats) | is.null(cats))
d <- copy(fhidata::norway_population_by_age_sex_b2020)
if(is.null(cats)){
d[, age_cat := age]
} else {
for(i in seq_along(cats)){
vals <- cats[[i]]
name <- names(cats)[[i]]
if(is.null(name)){
name <- paste0(formatC(vals[1],width=2,flag="0"),"-",formatC(vals[length(vals)],width=2,flag="0"))
} else if(name==""){
name <- paste0(formatC(vals[1],width=2,flag="0"),"-",formatC(vals[length(vals)],width=2,flag="0"))
}
d[age %in% vals, age_cat := name]
}
}
d <- d[!is.na(age_cat),.(
pop_jan1 = sum(pop_jan1)
),keyby=.(
year, location_code, age_cat, sex, imputed, granularity_geo
)]
setnames(d, "age_cat", "age")
d[, pop := pop_jan1]
d[, calyear := year]
setcolorder(d, c("year", "location_code", "granularity_geo", "age", "sex", "pop_jan1", "imputed", "calyear", "pop"))
return(d)
}
#' norway_population_by_age_sex_cats
#'
#' A function that easily categorizes the populations for you
#' @param cats A list containing vectors that you want to categorize
#' @param border The border year
#' @param use_current_year_as_1900_pop Replaces the year 1900's population data with the current year's population data
#' @examples
#' norway_population_by_age_sex_cats(cats = list(c(1:10), c(11:20)))
#' norway_population_by_age_sex_cats(cats = list("one to ten" = c(1:10), "eleven to twenty" = c(11:20)))
#' norway_population_by_age_sex_cats(cats = list(c(1:10), c(11:20), "21+"=c(21:200)))
#' @export
norway_population_by_age_sex_cats <- function(cats=NULL, border = fhidata::config$border, use_current_year_as_1900_pop = fhidata::config$use_current_year_as_1900_pop){
stopifnot(border == 2020)
if(border==2020){
retval <- norway_population_by_age_sex_b2020_cats(cats = cats)
}
x <- retval[,.(
pop_jan1 = sum(pop_jan1),
pop = sum(pop),
sex = "total"
),
keyby=.(
year,
location_code,
granularity_geo,
age,
imputed,
calyear
)]
retval <- rbindlist(list(retval, x), use.names = T)
if(use_current_year_as_1900_pop){
retval <- retval[year > 1990]
x <- retval[year==format.Date(Sys.time(),"%Y")]
x[, year := 1900]
x[, calyear := 1900]
retval <- rbindlist(list(retval, x), use.names = T)
}
# 9999 as current year
x <- retval[year==format.Date(Sys.time(),"%Y")]
x[, year := 9999]
x[, calyear := 9999]
retval <- rbindlist(list(retval, x), use.names = T)
return(retval)
}
# Creates the population dataset
# https://www.ssb.no/en/statbank/table/07459/tableViewLayout1/
# https://www.ssb.no/en/statbank/table/10826/ for wards
#' @import data.table
gen_norway_population_by_age_sex <- function(x_year_end, norway_locations_hierarchy_municip) {
# norway_locations_hierarchy_municip = fhidata::norway_locations_municip_b2020
stopifnot(x_year_end==2020)
# x_year_end <- 2020
# variables used in data.table functions in this function
. <- NULL
value <- NULL
age <- NULL
Var2 <- NULL
agecont <- NULL
pop <- NULL
municip_code <- NULL
municip_code_current <- NULL
year_end <- NULL
level <- NULL
region <- NULL
variable <- NULL
agenum <- NULL
imputed <- NULL
county_code <- NULL
municip_code_end <- NULL
sex <- NULL
contents <- NULL
x <- NULL
# end
# municip and ward ----
popFiles <- c(
"norway_population_by_age_sex_2020.csv",
"norway_population_by_age_sex_2021.csv",
"norway_population_by_age_sex_2022.csv"
)
pop <- vector("list", length = length(popFiles))
for (i in seq_along(pop)) {
pop[[i]] <- fread(system.file("rawdata", "population", popFiles[i], package = "fhidata"), encoding = "UTF-8")
pop[[i]] <- melt.data.table(pop[[i]], id.vars = c("region", "age", "sex"))
}
pop <- rbindlist(pop)
pop[, region := stringr::str_remove(region, "^K-")]
pop[, location_code := sprintf("municip%s", stringr::str_extract(region, "^[0-9][0-9][0-9][0-9]"))]
# correctly identify ward/bydels
pop[, year := as.numeric(stringr::str_extract(variable, "[0-9][0-9][0-9][0-9]$"))]
pop[, agenum := as.numeric(stringr::str_extract(age, "^[0-9]*"))]
pop[, age := NULL]
setnames(pop, "agenum", "age")
pop <- pop[location_code != "municipNA"]
pop[,
sex := dplyr::case_when(
sex=="Males" ~ "male",
sex=="Females" ~ "female"
)
]
pop[
norway_locations_hierarchy_municip,
on=c("location_code==municip_code"),
county_code := county_code
]
pop[
norway_locations_hierarchy_municip,
on=c("location_code==municip_code"),
baregion_code := baregion_code
]
pop_municip <- copy(pop[,.(
year,
location_code,
age,
sex,
value
)])
pop_county <- copy(pop[,.(
year,
location_code=county_code,
age,
sex,
value
)])
pop_baregion <- copy(pop[,.(
year,
location_code=baregion_code,
age,
sex,
value
)])
pop_nation <- copy(pop[,.(
year,
location_code="norge",
age,
sex,
value
)])
pop <- rbind(
pop_municip,
pop_county,
pop_baregion,
pop_nation
)
pop <- pop[!is.na(location_code)]
pop[, imputed := FALSE]
# so far 2005 to 2020
# year, municip_code, age, imputed, pop
# imputing the future (2 years+)
missingYears <- max(pop$year):(lubridate::year(lubridate::today()) + 2)
if (length(missingYears) > 1) {
copiedYears <- vector("list", length = length(missingYears) - 1)
for (i in seq_along(copiedYears)) {
copiedYears[[i]] <- pop[year == missingYears[1]]
copiedYears[[i]][, year := year + i]
}
copiedYears <- rbindlist(copiedYears)
copiedYears[, imputed := TRUE]
pop <- rbind(pop, copiedYears)
}
pop[, granularity_geo := stringr::str_extract(location_code, "^[a-z]+")]
pop[granularity_geo=="norge", granularity_geo := "nation"]
setnames(pop, "value", "pop_jan1")
pop[, calyear := year]
pop[, pop := pop_jan1]
return(invisible(pop))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.