#' Test Statistics for the Selection of Submodels of GVAR Model
#'
#' Calculates test statistics for the the selection of country-specific VARX or
#' VECX models of a GVAR model.
#'
#' @param object an object of class \code{"bgvarest"} or \code{"bgvecest"}, usually,
#' a result of a call to \code{\link{draw_posterior.gvarsubmodels}} or
#' \code{\link{draw_posterior.gvecsubmodels}}, respectively.
#' @param ... further arguments passed to or from other methods.
#'
#' @details The log-likelihood for the calculation of the information criteria is obtained by
#' \deqn{LL = \frac{1}{R} \sum_{i = 1}^{R} \left( \sum_{t = 1}^{T} -\frac{K^{dom}}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_t^{(i)}| -\frac{1}{2} (u_t^{{(i)}\prime} (\Sigma_t^{(i)})^{-1} u_t^{(i)} \right)},
#' where \eqn{u_t = y_t - \mu_t}.
#'
#' For VAR models the Akaike, Bayesian and Hannan–Quinn (HQ) information criteria are calculated as
#' \deqn{AIC = 2 (K^{d}p^{d} + K^{f}p^{f} + Ms + N) - 2 LL},
#' \deqn{BIC = (K^{d}p^{d} + K^{f}p^{f} + Ms + N) ln(T) - 2 LL} and
#' \deqn{HQ = 2 (K^{d}p^{d} + K^{f}p^{f} + Ms + N) ln(ln(T)) - 2 LL}, respectively,
#' where \eqn{K^{d}} is the number of endogenous domestic variables, \eqn{p^{d}} the number of lags of endogenous domestic variables,
#' \eqn{K^{f}} is the number of foreign variables, \eqn{p^{f}} the number of lags of foreign variables,
#' \eqn{M} the number of global variables, \eqn{s} the number of lags of global variables,
#' \eqn{N} the number of deterministic terms and \eqn{T} the number of observations.
#'
#' @return A list.
#'
#' @examples
#' # Load data
#' data("gvar2019")
#'
#' # Create regions
#' temp <- create_regions(country_data = gvar2019$country_data,
#' weight_data = gvar2019$weight_data,
#' region_weights = gvar2019$region_weights,
#' regions = list(EA = c("AT", "BE", "DE", "ES", "FI", "FR", "IT", "NL")),
#' period = 3)
#'
#' country_data <- temp$country_data
#' weight_data <- temp$weight_data
#' global_data = gvar2019$global_data
#'
#' # Difference series to make them stationary
#' country_data <- diff_variables(country_data, variables = c("y", "Dp", "r"), multi = 100)
#' global_data <- diff_variables(global_data, multi = 100)
#'
#' # Create time varying weights
#' weight_data <- create_weights(weight_data, period = 3, country_data = country_data)
#'
#' # Generate specifications
#' model_specs <- create_specifications(
#' country_data = country_data,
#' global_data = global_data,
#' countries = c("US", "JP", "CA", "NO", "GB", "EA"),
#' domestic = list(variables = c("y", "Dp", "r"), lags = 1),
#' foreign = list(variables = c("y", "Dp", "r"), lags = 1),
#' global = list(variables = c("poil"), lags = 1),
#' deterministic = list(const = TRUE, trend = FALSE, seasonal = FALSE),
#' iterations = 10,
#' burnin = 10)
#' # Note that the number of iterations and burnin draws should be much higher!
#'
#' # Overwrite country-specific specifications
#' model_specs[["US"]][["domestic"]][["variables"]] <- c("y", "Dp", "r")
#' model_specs[["US"]][["foreign"]][["variables"]] <- c("y", "Dp")
#'
#' # Create estimation objects
#' country_models <- create_models(country_data = country_data,
#' weight_data = weight_data,
#' global_data = global_data,
#' model_specs = model_specs)
#'
#' # Add priors
#' models_with_priors <- add_priors(country_models,
#' coef = list(v_i = 1 / 9, v_i_det = 1 / 10),
#' sigma = list(df = 3, scale = .0001))
#'
#' # Obtain posterior draws
#' object <- draw_posterior(models_with_priors)
#'
#' # Obtain test statistics
#' tests <- submodel_test_statistics(object, ic = "BIC", select = "order")
#'
#'
#' @export
submodel_test_statistics <- function(object, ...){
n_models <- length(object)
teststats <- data.frame(ctry = rep(NA, n_models),
p_domestic = rep(NA, n_models),
p_foreign = rep(NA, n_models),
s = rep(NA, n_models),
r = rep(NA, n_models),
LL = rep(NA, n_models),
AIC = rep(NA, n_models),
BIC = rep(NA, n_models),
HQ = rep(NA, n_models),
stringsAsFactors = FALSE)
loglik <- list()
result <- list()
n_ctry <- length(unique(names(object)))
length(result) <- n_ctry
names(result) <- unique(names(object))
pb <- utils::txtProgressBar(style = 3)
for (i in 1:n_models) {
current_ctry <- names(object)[i]
n_models_curr_ctry <- sum(names(object) == current_ctry)
n_completed_curr_ctry <- sum(names(object)[1:i] == current_ctry)
pos <- cumsum(as.numeric(names(object) == current_ctry))
pos[as.numeric(names(object) == current_ctry) == 0] <- 0
teststats[i, "ctry"] <- names(object)[i]
# Get model specifications
structural <- object[[i]][["model"]][["structural"]]
tvp <- object[[i]][["model"]][["tvp"]]
sv <- object[[i]][["model"]][["sv"]]
tt <- NROW(object[[i]][["data"]][["Y"]])
k_domestic <- length(object[[i]][["model"]][["domestic"]][["variables"]])
p_domestic <- object[[i]][["model"]][["domestic"]][["lags"]]
k_foreign <- length(object[[i]][["model"]][["foreign"]][["variables"]])
p_foreign <- object[[i]][["model"]][["foreign"]][["lags"]]
global <- !is.null(object[[i]][["model"]][["global"]])
if (global) {
k_global <- length(object[[i]][["model"]][["global"]][["variables"]])
s <- object[[i]][["model"]][["global"]][["lags"]]
}
# Update teststats
teststats[i, "p_domestic"] <- p_domestic
teststats[i, "p_foreign"] <- p_foreign
if (global) {
teststats[i, "s"] <- s
}
if (!is.null(object[[i]][["model"]][["rank"]])) {
teststats[i, "r"] <- object[[i]][["model"]][["rank"]]
}
# Test if Gibbs sampler was successful
if (!is.null(object[[i]][["error"]])) {
if (object[[i]][["error"]]) {
loglik[[pos[i]]] <- NA
}
} else {
if (tvp) {
temp_pars <- list()
length(temp_pars) <- tt
} else {
temp_pars <- NULL
}
x <- NULL
if ("ctryvarest" %in% class(object[[i]])) {
x <- t(object[[i]][["data"]][["Z"]])
tot_pars <- NCOL(object[[i]][["data"]][["Z"]])
vars <- c("domestic", "foreign", "global", "deterministic")
for (j in vars) {
if (!is.null(object[[i]][["posteriors"]][[j]])) {
if (is.list(object[[i]][["posteriors"]][[j]])) {
for (period in 1:tt) {
temp_pars[[period]] <- cbind(temp_pars[[period]], object[[i]][["posteriors"]][[j]][[period]])
}
} else {
temp_pars <- cbind(temp_pars, object[[i]][["posteriors"]][[j]])
}
}
}
}
if ("ctryvecest" %in% class(object[[i]])) {
object[[i]] <- .create_pi_matrices(object[[i]])
x <- t(object[[i]][["data"]][["X"]])
tot_pars <- object[[i]][["model"]][["rank"]] + nrow(x)
if (object[[i]][["model"]][["rank"]] > 0) {
x <- rbind(t(object[[i]][["data"]][["W"]]), x)
}
vars <- c("pi_domestic", "pi_foreign", "pi_global", "pi_deterministic",
"gamma_domestic", "gamma_foreign", "gamma_global", "gamma_deterministic")
for (j in vars) {
if (!is.null(object[[i]][["posteriors"]][[j]])) {
if (is.list(object[[i]][["posteriors"]][[j]])) {
for (period in 1:tt) {
temp_pars[[period]] <- cbind(temp_pars[[period]], object[[i]][["posteriors"]][[j]][[period]])
}
} else {
temp_pars <- cbind(temp_pars, object[[i]][["posteriors"]][[j]])
}
}
}
}
if (tvp) {
draws <- nrow(temp_pars[[1]])
} else {
draws <- nrow(temp_pars)
}
loglik[[pos[i]]] <- matrix(NA, tt, draws)
y <- t(object[[i]][["data"]][["Y"]])
u <- y * 0
if (sv) {
sigma <- matrix(NA_real_, k_domestic * tt, k_domestic)
} else {
sigma <- matrix(NA_real_, k_domestic, k_domestic)
}
for (j in 1:draws) {
# Residuals
if (tvp) {
for (period in 1:tt) {
if (structural) {
A0 <- matrix(object[[i]][["posteriors"]][["a0"]][[period]][j, ], k_domestic)
} else {
A0 <- diag(k_domestic)
}
u[, period] <- A0 %*% y[, period] - matrix(temp_pars[[period]][j, ], k_domestic) %*% x[, period]
}
} else {
if (structural) {
A0 <- matrix(object[[i]][["posteriors"]][["a0"]][j, ], k_domestic)
} else {
A0 <- diag(k_domestic)
}
u <- A0 %*% y - matrix(temp_pars[j, ], k_domestic) %*% x
}
if (sv) {
for (period in 1:tt) {
sigma[(period - 1) * k_domestic + 1:k_domestic,] <- matrix(object[[i]][["posteriors"]][["sigma"]][[period]][j,], k_domestic)
}
} else {
sigma <- matrix(object[[i]][["posteriors"]][["sigma"]][j,], k_domestic)
}
# Calculate log-likelihood
loglik[[pos[i]]][, j] <- bvartools::loglik_normal(u, sigma)
}
ll <- sum(rowMeans(loglik[[pos[i]]]))
teststats[i, "LL"] <- ll
teststats[i, "AIC"] <- 2 * tot_pars - 2 * ll
teststats[i, "BIC"] <- log(tt) * tot_pars - 2 * ll
teststats[i, "HQ"] <- 2 * log(log(tt)) * tot_pars - 2 * ll
}
# If all model of a country are finished, updated the result object
if (n_models_curr_ctry == n_completed_curr_ctry) {
model_pos <- which(teststats[, "ctry"] == current_ctry)
result[[current_ctry]][["teststats"]] <- teststats[model_pos, -1]
rownames(result[[current_ctry]][["teststats"]]) <- NULL
result[[current_ctry]][["loglik"]] <- loglik
loglik <- list()
class(result[[current_ctry]]) <- c("teststats.ctryvarest", "list")
}
utils::setTxtProgressBar(pb, i / n_models)
}
close(pb)
# Clean up teststats tables
result <- lapply(result, function(x) {
x$teststats <- x$teststats[, which(!apply(x$teststats, 2, function(x) {all(is.na(x))}))]
return(x)
})
class(result) <- c("teststats.bgvarest", "list")
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.