R/Conversion.R

#' numeric2col
#'
#' Map numeric values to a colour map
#'
#' @param num A numeric vector. The numbers which will
#' be mapped to colours.
#' @param colmap A colour map. See \code{\link[grDevices]{palette}}.
#' @param breaks.length A single integer. Controls the number of
#' breaks in the discretisation of \code{num}.
#'
#' @examples
#' ns <- 16
#' sky <- CMBDataFrame(I = rnorm(12*ns^2), nside = ns)
#' plot(sky, col = numeric2col(sky$I))
#'
#'@export
numeric2col <- function(num, colmap = grDevices::terrain.colors(100),
                        breaks.length = length(colmap)) {

  rx <- range(num, na.rm = TRUE)
  breaks <- seq.int(rx[1L], rx[2L], length.out = breaks.length)
  intervals<- findInterval(
    num, breaks[2:(breaks.length-1)], rightmost.closed = FALSE,
    all.inside = FALSE, left.open = TRUE)
  cols <- colmap[intervals+1]
  return(cols)
}





#' Convert pixel indices to cartesian/spherical coordinates
#'
#' Convert HEALPix pixel indices to cartesian or spherical coordinates
#'
#' @param nside the nside parameter (integer number \eqn{2^k})
#' @param coords 'cartesian' or 'spherical' coordinates
#' @param ordering 'ring' or 'nested' ordering
#' @param spix optional integer or vector of sample pixel indices
#'
#' @return a data.frame with columns 'x', 'y', 'z' (cartesian) or
#' 'theta', 'phi' (spherical)
#'
#' @examples
#'
#' pix2coords(nside=1, spix=c(2,5))
#' pix2coords(nside=1,  coords = "spherical", spix=c(2,5))
#'
#' @export
pix2coords <- function(nside, coords = "cartesian", ordering = "nested", spix)
{
  if ( coords != "cartesian" && coords != "spherical")
  {
    stop("coords must be 'cartesian' or 'spherical'")
  }

  if ( ordering != "ring" && ordering != "nested")
  {
    stop("ordering must be 'ring' or 'nested'")
  }

  cart <- (coords == "cartesian")
  nest <- (ordering == "nested")

  if (missing(spix))
  {
    spix <- NULL
  }

  p2c <- pix2coords_internal(nside = nside, nested = nest,
                             spix = spix, cartesian = cart)

  if ( cart )
  {
    return(data.frame(x = p2c[,1], y = p2c[,2], z = p2c[,3]))
  }
  else
  {
    return(data.frame(theta = p2c[,1], phi = p2c[,2]))
  }
}



#' Convert ring to nest ordering.
#'
#' \code{ring2nest} converts HEALPix pixel indices in the 'ring' ordering scheme
#'  to HEALPix pixel indices in the 'nested' ordering scheme.
#'
#' @param nside is the HEALPix nside parameter (integer number \eqn{2^k})
#' @param pix is a vector of HEALPix pixel indices, in the 'ring' ordering scheme.
#'
#' @return the output is a vector of HEALPix pixel indices in the 'nested'
#' ordering scheme.
#'
#' @examples
#' ## Convert (1,2,23) from ring to nest at nside = 8
#' nside <- 8
#' pix <-c(1,2,23)
#' ring2nest(nside,pix)
#'
#' @export
ring2nest <- function(nside, pix) {

  ## initialisations
  ipring <- pix - 1

  # number of pix at nside
  PixNum <- 12*nside^2
  if (!(all(ipring>=0) && all(ipring<PixNum))) {
    print("Error in input pix index!")
  }

  jrll <- c(2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4)
  jpll <- c(1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7)
  pix2 <- mkxy2pix()
  x2pix <- pix2$x
  y2pix <- pix2$y


  nl2 <- 2*nside
  nl4 <- 4*nside
  #points in each polar cap, equal 0 when nside=1
  ncap <- nl2*(nside-1)

  #preallocation
  irn <- rep(0,length(ipring))
  iphi <- rep(0,length(ipring))
  nr <- rep(0,length(ipring))
  face_num <- rep(0,length(ipring))
  kshift <- rep(0,length(ipring))

  ##north polar cap
  mask <- ipring<ncap
  mRing <-ipring[mask]

  # counted from North pole
  mirn <- round(sqrt((mRing+1)/2))
  miphi <- mRing - 2*mirn*(mirn - 1)
  MringPhil <- correct_ring_phi(1, mirn, miphi)
  mirn <- MringPhil$irn
  miphi <- MringPhil$iphi
  kshift[mask] <- 0
  nr[mask] <- trunc(mirn)
  face_num[mask] <- trunc(miphi/mirn)
  iphi[mask] <- miphi
  irn[mask] <- mirn

  ## equatorial region
  mask <- (ncap <= ipring) & (ipring < PixNum - ncap)
  mRing <- ipring[mask]
  mip <- trunc(mRing - ncap)
  ## counted from North pole
  mirn <- trunc(mip/nl4) + nside;
  miphi <- mip %% nl4
  kshift[mask]  <- (mirn+nside) %% 2
  nr[mask] <- nside
  # in {1, 2*nside +1}
  mire <- mirn - nside + 1
  mirm <-  nl2 + 2 - mire

  # face boundary
  mifm <- trunc((miphi - trunc(mire/2) + nside)/nside)
  mifp <- trunc((miphi - trunc(mirm/2) + nside)/nside)

  mface <- matrix(rep(0,length(mRing)),ncol=1)
  smask <- (mifp == mifm)
  mface[smask] <- mifp[smask] %% 4+4 # faces 4 to 7
  smask <- (mifp < mifm)
  mface[smask] <- trunc(mifp[smask]); # (half-)faces 0 to 3
  smask <- (mifp > mifm)
  mface[smask] <- trunc(mifp[smask]+7); #(half-)faces 8 to 11
  face_num[mask] <- mface
  irn[mask] <- mirn
  iphi[mask] <- miphi

  ## south polar cap
  mask <- ipring >= (PixNum - ncap)
  mRing <- ipring[mask]

  mip <- trunc(PixNum - mRing)
  # counted from South pole
  mirs <- round(sqrt(mip/2))
  miphi <- 2*mirs*(mirs + 1) - mip

  MringPhil <- correct_ring_phi(1, mirs, miphi)
  mirs <- MringPhil$irn
  miphi <- MringPhil$iphi
  kshift[mask] <-0
  nr[mask] <- trunc(mirs)
  irn[mask] <- trunc(nl4 - mirs)
  face_num[mask] <- trunc(miphi/mirs) + 8
  iphi[mask] <- miphi

  ## finds the (x,y) on the face
  irt <- irn  - jrll[face_num+1]*nside + 1          # in {-nside+1,0}
  ipt <- 2*iphi - jpll[face_num+1]*nr - kshift + 1   # in {-nside+1,nside-1}
  mask <- ipt >= nl2 # for the face #4
  ipt[mask] <- ipt[mask] - 8*nside
  ix <-  trunc((ipt - irt )/2)
  iy <- -trunc((ipt + irt )/2)
  scalemlv <- 1
  scale_factor <- 16384
  ipf <- 0
  # for nside in [2^14, 2^20]
  ismax <- 1
  if (nside > 1048576){
    ismax <- 3
  }

  for (i in 0:ismax) {
    # last 7 bits
    ix_low <- ix %% 128
    iy_low <- iy %% 128
    ipf <- trunc(ipf +(x2pix[ix_low+1]+y2pix[iy_low+1])*scalemlv)
    scalemlv <- scalemlv*scale_factor
    # truncate out last 7 bits
    ix  <- trunc(ix/128)
    iy  <- trunc(iy/128)
  }

  ipf <-  trunc(ipf +(x2pix[ix+1]+y2pix[iy+1])*scalemlv)
  # in {0, 12*nside**2 - 1}
  ipring <- trunc(ipf + (face_num*(trunc(PixNum/12))))
  nPix <- ipring + 1

  return(as.integer(nPix))
}


## HELPER FUNCTION 1 FOR ring2nest
correct_ring_phi <- function(location,iring,iphi){
  delta <- rep(0,length(iphi))
  delta[iphi<0] <- 1
  delta[iphi>4*iring] <- -1
  nzMask <- delta!=0
  if (any(nzMask)){
    iring[nzMask] <- iring[nzMask] - location[nzMask]*delta[nzMask]
    iphi[nzMask]  <- iphi[nzMask] + delta[nzMask]*(4*iring[nzMask])
  }
  MringPhil <- list(irn=iring,iphi=iphi)
  return(MringPhil)
}

## HELPER FUNCTION 2 FOR ring2nest
mkxy2pix <- function() {
  # sets the array giving the number of the pixel lying in (x,y)
  # x and y are in {1,128}
  # the pixel number is in {0,128**2-1}
  # if  i-1 = sum_p=0  b_p * 2^p
  # then ix = sum_p=0  b_p * 4^p
  # iy = 2*ix
  # ix + iy in {0, 128**2 -1}

  x2pix <- rep(128,0)
  y2pix <- rep(128,0)
  for (i in 1:128) {
    j<- i-1
    k<- 0
    ip<- 1
    ip <- 1
    while ( !(j==0) ) {
      id <- j %% 2
      j <- trunc(j/2)
      k<- id*ip+k
      ip<- 4*ip
    }
    x2pix[i]<- k
    y2pix[i]<- 2*k
  }

  pix2 <- list(x=as.integer(x2pix),y=as.integer(y2pix))
  return(pix2)
}


#' Create a new data.frame with a given coordinate system
#'
#' This does not affect the original object unless new coordinate system is
#' directly assigned.
#'
#'
#'@param x a data.frame with columns
#' labelled x, y, z (for cartesian)
#' or theta, phi (for spherical colatitude and longitude respectively)
#'@param new.coords specifies the new coordinate system
#'("spherical" or "cartesian").
#'@param ... Unused arguments.
#'
#'@return
#' A new data.frame whose coordinates are as specified by
#' \code{new.coords}
#'
#' @examples
#'
#' ## Create df with no coords, then create df2 with spherical coords
#' df <- data.frame(x = c(1,0,0), y = c(0,1,0), z = c(0,0,1))
#' df
#'
#' df2 <- coords(df, new.coords = "spherical")
#' df2
#'
#'
#' ## The function coords does not affect the original object.
#' ## To change the coords assign a new value ("spherical or "cartesian")
#'
#' coords(df, new.coords = "spherical")
#' df
#' coords(df) <- "spherical"
#' df
#'
#'@export
coords.data.frame <- function(x, new.coords, ...)
{
  df <- x

  if ( new.coords == "spherical" )
  {
    if ( all(c("theta","phi") %in% names(df)) )
    {
      return(df)
    }

    if ( !all(c("x","y","z") %in% names(df)) )
    {
      stop(paste0("df must have columns labelled x, y, z (for cartesian) ",
                  "or theta, phi (for spherical colatitude and ",
                  "longitude respectively)"))
    }

    x.i <- which(names(df) == "x")
    y.i <- which(names(df) == "y")
    z.i <- which(names(df) == "z")

    crds <- df[,c(x.i, y.i, z.i)]
    crds <- car2sph(crds)
    other <- df[,-c(x.i, y.i, z.i), drop = FALSE]
    df <- cbind(crds, other)

  } else if ( new.coords == "cartesian" ) {

    if ( all(c("x","y","z") %in% names(df)) )
    {
      return(df)
    }

    if ( !all(c("theta","phi") %in% names(df)) )
    {
      stop(paste0("df must have columns labelled x, y, z (for cartesian) ",
                  "or theta, phi (for spherical colatitude and ",
                  "longitude respectively)"))
    }

    theta.i <- which(names(df) == "theta")
    phi.i <- which(names(df) == "phi")

    crds <- df[,c(theta.i, phi.i)]
    crds <- sph2car(crds)
    other <- df[,-c(theta.i, phi.i), drop = FALSE]
    df <- cbind(crds, other)
  }

  return(df)
}



#' Assign new coordinate system to a \code{\link{data.frame}}
#'
#'@keywords internal
#'
#' @seealso \code{\link{coords.data.frame}}
#'
#' @examples
#'
#' ## Create df with no coords, then create df2 with cartesian coords
#' df <- data.frame(x = c(1,0,0), y = c(0,1,0), z = c(0,0,1))
#' df2 <- coords(df, new.coords = "cartesian")
#' df2
#' df
#'
#' ## Change the coords of df directly (to spherical)
#' coords(df) <- "spherical"
#' df
#'
#' @export
`coords<-.data.frame` <- function(x,...,value) {
  return(coords(x, new.coords = value))
}





#' Return pixel index within its base pixel
#'
#' Convert a pixel index \eqn{p} to its index within
#' the base pixel to which \eqn{p} belongs
#'
#' @param p The pixel index at resolution j, in nested order.
#' @param j The resolution parameter nside = 2^j
#'
#'
#'@examples
#'
#'p2ibp(6, 0)
#'p2ibp(6, 1)
#'
#'@export
p2ibp <- function(p, j) #indexInBP
{
  (p-1) %% 4^j + 1
}


#' Return base pixel to which pixel belongs
#'
#' The base pixel to which pixel \eqn{p} belongs at resolution \eqn{j}
#'
#' @param p The pixel index at resolution j, in nested order.
#' @param j The resolution parameter nside = 2^j
#'
#'@examples
#'
#'p2bp(5, 0)
#'p2bp(5, 1)
#'
#'@export
p2bp <- function(p, j)
{
  floor((p-1) / (4^j)) + 1
}


#' Computes pixel's index using its subindex within base resolution
#'
#' Find the pixel index \eqn{p} of a given pixel with
#' index \code{ibp} in base pixel \code{bp}.
#'
#' @param ibp The pixel index within base pixel bp, at resolution j, in nested order.
#' @param bp The base pixel index
#' @param j The resolution parameter nside = 2^j
#'
#'@examples
#'
#'ibp2p(1, 1, 2)
#'ibp2p(1, 2, 2)
#'
#'@export
ibp2p <- function(ibp, bp, j)
{
  (bp - 1)*4^j + ibp
}

# Convert binary to decimal
bin2dec <- function(x, digits)
{
  pow <- 2^(0:31)[1:digits]
  sum(pow[as.logical(x)])
}

# Convert decimal to binary
dec2bin = function(number, digits) {
  as.numeric(intToBits(number))[1:digits]
}

# Separate a binary number (e.g., output of dec2bin)
# into its even and odd digits
bin2f <- function(bin, j)
{
  even.bits <- bin[seq(2,2*j  , by = 2)]
  odd.bits  <- bin[seq(1,2*j-1, by = 2)]

  return(list(even = even.bits, odd = odd.bits))
}

# Recombine even and odd digits into a binary number
f2bin <- function(f, j)
{
  bin <- vector(mode = "integer", length = 2*j)
  bin[seq(2,2*j  , by = 2)] <- f$even
  bin[seq(1,2*j-1, by = 2)] <- f$odd
  return(bin)
}


#'minDist2nside
#'
#'Get an nside such that all points belong
#'to different pixels, when the minimum
#'distance between the points is \code{dist}.
#'
#'We treat pixels as circles. From the total surface
#'area of a unit sphere and the radius of a circle with
#'area 4*pi/(12*nside^2), we derive a sufficiently
#'large nside to achieve the desired separation. We
#'aim for (circular) pixels with (default)
#'radius \code{dist}*3/4.
#'
#'@param dist The minimum distance between any
#'two points in a data.frame
#'of points that lie on S^2
#'@param factor Allows changing the shrinkage factor
#'for the circlular pixels (radius = dist*factor).
#'
#'@keywords internal
#'
#'@export
minDist2nside <- function(dist, factor = 3/4)
{
  n <- 1/(dist*sqrt(3))/factor

  # Round to the next power of 2
  return(2^ceiling(log2(n)))
}




#' Convert geographic to spherical coordinates
#'
#' Convert latitude (lat) and longitude (lon) to spherical
#' coordinates (theta, phi) with theta in \eqn{[0,pi]} and
#' phi in \eqn{[0,2*pi)}. All values lat, lon, theta, phi
#' are assumed to be in radians.
#'
#'
#' @param ... A data.frame with columns lat and lon,
#' or named vectors of lat and lon.
#'
#' @return A data.frame with columns theta and  phi.
#'
#' @examples
#'
#' geo <- data.frame( lat = c(0, pi/3, pi/2), lon = c(0, pi/3, pi))
#' geo
#' sph <- geo2sph(geo)
#' sph
#'
#' @export
geo2sph <- function(...) {

  df <- data.frame(...)

  if ( all(c("lat","lon") %in% names(df)) ) {

    lat <- df$lat
    lon <- df$lon

    theta <- pi/2 - lat
    phi <- lon

    negs <- theta < -1e-13
    theta[negs] <- -theta[negs]

    high <- theta > pi+1e-13
    theta[high] <- 2*pi - theta[high]

    # These are now in e.g., [0,1e-13]
    zeros <- theta <= 0
    pies <- theta >= pi

    theta[zeros] <- 0
    theta[pies] <- pi
    phi[zeros] <- 0
    phi[pies] <- 0

    negs <- phi < 0
    while ( any(negs) ) {
      phi[negs] <- phi[negs] + 2*pi
      negs <- phi < 0
    }

    high <- phi > 2*pi
    while ( any(high) ) {
      phi[high] <- phi[high] - 2*pi
      high <- phi > 2*pi
    }

    df$lat <- theta
    df$lon <- phi
    names(df)[names(df) == "lat"] <- "theta"
    names(df)[names(df) == "lon"] <- "phi"

  }

  return(df)
}
frycast/rcosmo documentation built on June 4, 2019, 5:13 p.m.