require(testthat)
test_that('Check M as input works', {
n=10 #sample size
m=5 # dimension of covariance matrices
M <- array(0,c(m,m,n))
for (i in 1:n){
y0=rnorm(m)
aux<-diag(m)+y0%*%t(y0)
M[,,i]<-aux
}
Fmean=CovFMean(M=M,optns=list(metric="frobenius"))
expect_equal(length(Fmean$Mout),1)
})
test_that('Check case M as input works: power metric case', {
n=10 #sample size
m=5 # dimension of covariance matrices
M <- array(0,c(m,m,n))
for (i in 1:n){
y0=rnorm(m)
aux<-diag(m)+y0%*%t(y0)
M[,,i]<-aux
}
Fmean=CovFMean(M=M,optns=list(metric="power",alpha=2))
expect_equal(length(Fmean$Mout),1)
})
test_that('Check case M as input works: cholesky metric case', {
n=10 #sample size
m=5 # dimension of covariance matrices
M <- array(0,c(m,m,n))
for (i in 1:n){
y0=rnorm(m)
aux<-diag(m)+y0%*%t(y0)
M[,,i]<-aux
}
Fmean=CovFMean(M=M,optns=list(metric="cholesky",alpha=2))
expect_equal(length(Fmean$Mout),1)
})
test_that('Check case M as input works: log-cholesky metric case', {
n=10 #sample size
m=5 # dimension of covariance matrices
M <- array(0,c(m,m,n))
for (i in 1:n){
y0=rnorm(m)
aux<-diag(m)+y0%*%t(y0)
M[,,i]<-aux
}
Fmean=CovFMean(M=M,optns=list(metric="log_cholesky",alpha=2))
expect_equal(length(Fmean$Mout),1)
})
test_that('Check Global Regression Simulated Setting Works (accurate estimate to the true target)', {
set.seed(1234321)
n=5000 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<-diag((2+x[i,]))
}
Fmean=CovFMean(M=M,optns=list(metric="frobenius"))
aux1=sum(abs(Fmean$Mout[[1]]-diag(c(2,2))))
if(aux1<=0.05){
flag=1
}else{
flag=0
}
expect_equal(flag,1)
})
test_that('Check Global Regression Simulated Setting Works (accurate estimate to the true target) power case', {
set.seed(1234321)
n=5000 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<-diag((2+x[i,])^(1/3))
}
Fmean=CovFMean(M=M,optns=list(metric="power",alpha=3))
aux1=sum(abs(Fmean$Mout[[1]]-diag(c(2,2)^(1/3))))
if(aux1<=0.01){
flag=1
}else{
flag=0
}
expect_equal(flag,1)
})
test_that('Check Global Regression Simulated Setting Works (accurate estimate to the true target) log_cholesky case', {
set.seed(1234321)
n=5000 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(rnorm(n),rnorm(n))
for (i in 1:n){
M[,,i]<- diag(exp(x[i,]))
}
xout=cbind(0,0)
M0 = diag(exp(as.vector(xout)))
Fmean=CovFMean(M=M,optns=list(metric="log_cholesky"))
aux1=sum(abs(Fmean$Mout[[1]]-M0))
if(aux1<=0.05){
flag=1
}else{
flag=0
}
expect_equal(flag,1)
})
test_that('Check Global Regression Simulated Setting Works (accurate estimate to the true target) cholesky case', {
set.seed(1234321)
n=5000 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<- diag((1+x[i,])^(2))
}
xout=cbind(0,0)
M0 <- diag((1+as.vector(xout))^(2))
Fmean=CovFMean(M=M,optns=list(metric="cholesky"))
aux1=sum(abs(Fmean$Mout[[1]]-M0))
if(aux1<=0.05){
flag=1
}else{
flag=0
}
expect_equal(flag,1)
})
test_that('Check unweighted Frobenius case works', {
set.seed(1234321)
n=5000 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<-diag((2+x[i,]))
}
weightsF=rep(1/n,n)
Fmean=CovFMean(M=M,optns=list(metric="frobenius",weights=weightsF))
cont=matrix(0,nrow=m,ncol=m)
for(i in 1:n){
cont=cont+M[,,i]
}
cont=cont/n
expect_true(sum(abs(cont-Fmean$Mout[[1]]))<1e-8)
})
test_that('Check weighted Frobenius case works', {
set.seed(1234321)
n=5000 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<-diag((2+x[i,]))
}
weightsF=n:1
weightsF=weightsF/sum(weightsF)
Fmean=CovFMean(M=M,optns=list(metric="frobenius",weights=weightsF))
cont=matrix(0,nrow=m,ncol=m)
for(i in 1:n){
cont=cont+M[,,i]*weightsF[i]
}
expect_true(sum(abs(cont-Fmean$Mout[[1]]))<1e-5)
})
test_that('Check weighted Frobenius using power input case works', {
set.seed(1234321)
n=5000 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<-diag((2+x[i,]))
}
weightsF=n:1
weightsF=weightsF/sum(weightsF)
Fmean=CovFMean(M=M,optns=list(metric="power",alpha=1,weights=weightsF))
cont=matrix(0,nrow=m,ncol=m)
for(i in 1:n){
cont=cont+M[,,i]*weightsF[i]
}
expect_true(sum(abs(cont-Fmean$Mout[[1]]))<1e-5)
})
test_that('Check weighted general power input case works', {
set.seed(1234321)
n=500 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<-diag((2+x[i,]))
}
idx=1:n%%2
weightsF=idx/sum(idx)
Fmean=CovFMean(M=M,optns=list(metric="power",alpha=2,weights=weightsF))
cont=matrix(0,nrow=m,ncol=m)
for(i in 1:n){
cont=cont+(M[,,i]%*%M[,,i])*weightsF[i]
}
expect_true(sum(abs(sqrt(cont)-Fmean$Mout[[1]]))<1e-4)
})
test_that('Check unweighted Frobenius using power input case works', {
set.seed(1234321)
n=5000 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<-diag((2+x[i,]))
}
weightsF=rep(1/n,n)
Fmean=CovFMean(M=M,optns=list(metric="power",alpha=1,weights=weightsF))
cont=matrix(0,nrow=m,ncol=m)
for(i in 1:n){
cont=cont+M[,,i]*weightsF[i]
}
expect_true(sum(abs(cont-Fmean$Mout[[1]]))<1e-5)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.