require(testthat)
test_that('error: x and xout must have same number of columns', {
n=30 #sample size
m=20 # dimension of covariance matrices
M <- array(0,c(m,m,n))
for (i in 1:n){
y0=rnorm(m)
aux<-15*diag(m)+y0%*%t(y0)
M[,,i]<-aux
}
x=cbind(rnorm(n),rnorm(n))
xout = matrix(c(0.25,0.5,0.75),3) #output predictor levels
optns = list(metric='log_cholesky')
expect_error(LocCovReg(x=x,M=M,xout=xout,optns=optns),"x and xout must have same number of columns")
})
test_that('error: bandwidth must be positive', {
n=30 #sample size
m=20 # dimension of covariance matrices
M <- array(0,c(m,m,n))
for (i in 1:n){
y0=rnorm(m)
aux<-15*diag(m)+y0%*%t(y0)
M[,,i]<-aux
}
bwCov = -1.0
x=cbind(rnorm(n),rnorm(n))
xout = matrix(c(0.25,0.5,0.9,0.5),2) #output predictor levels
optns = list(bwCov = bwCov, metric='log_cholesky')
expect_error(LocCovReg(x=x,M=M,xout=xout,optns=optns),"bandwidth must be positive")
})
test_that('error: M must be an array or a list', {
#alpha=2.5
n=30 #sample size
m=20 # dimension of covariance matrices
M <- matrix(1,n,3)
x=matrix(rnorm(n),n)
xout = matrix(c(0.25,0.5,0.75),3) #output predictor levels
optns = list(metric='log_cholesky')
expect_error(LocCovReg(x=x,M=M,xout=xout,optns=optns),"M must be an array or a list")
})
test_that('error: the number of rows of x must be the same as the number of covariance matrices in M', {
n=30 #sample size
m=20 # dimension of covariance matrices
M <- array(0,c(m,m,n+1))
for (i in 1:(n+1)){
y0=rnorm(m)
aux<-15*diag(m)+y0%*%t(y0)
M[,,i]<-aux
}
x=matrix(rnorm(n),n)
xout = matrix(c(0.25,0.5,0.75),3) #output predictor levels
optns = list(metric='log_cholesky')
expect_error(LocCovReg(x=x,M=M,xout=xout,optns=optns),"the number of rows of x must be the same as the number of covariance matrices in M")
})
test_that('Check correlation matrix output in the case p=2 with cross validation', {
n=20 #sample size
m=6 # dimension of covariance matrices
M <- array(0,c(m,m,n))
for (i in 1:n){
y0=rnorm(m)
aux<-15*diag(m)+y0%*%t(y0)
M[,,i]<-aux
}
x=cbind(rnorm(n),rnorm(n))
xout =cbind(runif(3),runif(3))#output predictor levels
optns = list(kernel ='gauss',corrOut=TRUE,metric='log_cholesky')
aux=LFRCovCholesky(x=x,M=M,xout=xout,optns)
Mout=aux[[2]]
expect_equal(sum(diag(Mout[[2]])),m)
})
test_that('Check Local Regression Simulated Setting Works (accurate estimate to the true target) on main Local function', {
set.seed(1234321)
n=100000 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))#cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<- diag(exp(x[i,]))
}
xout=cbind(0.5,1)
M0 = diag(exp(as.vector(xout)))
Cov_est=LocCovReg(x=x,M=M,xout=xout,optns=list(corrOut=FALSE,metric="log_cholesky",bwCov=c(0.5,0.5)))
aux1 = sum(abs(Cov_est$Mout[[1]]- M0))
if(aux1<=1e-3){
flag=1
}else{
flag=0
}
expect_equal(flag,1)
})
test_that('Check Local Regression Simulated Setting Works (accurate estimate to the true target) on main Local function', {
set.seed(1234321)
n=100 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))#cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<- diag(exp(x[i,]))
}
xout=cbind(0.5,1)
M0 = diag(exp(as.vector(xout)))
Cov_est=LocCovReg(x=x,M=M,xout=xout,optns=list(corrOut=FALSE,metric="log_cholesky"))#using CV
aux1 = sum(abs(Cov_est$Mout[[1]]- M0))
if(aux1<=1e-3){
flag=1
}else{
flag=0
}
expect_equal(flag,1)
})
test_that('Check Local Regression Simulated Setting Works (accurate estimate to the true target) on main Local function', {
set.seed(1234321)
n=100000 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<- diag((1+x[i,])^(2))#diag((2+x[i,])^(1/3))
}
xout=cbind(0.5,0.5)
M0 <- diag((1+as.vector(xout))^(2))
Cov_est=LocCovReg(x=x,M=M,xout=xout,optns=list(corrOut=FALSE,metric="cholesky",bwCov=c(0.5,0.5)))
aux1 = sum(abs(Cov_est$Mout[[1]]-M0))
if(aux1<=1e-3){
flag=1
}else{
flag=0
}
expect_equal(flag,1)
})
test_that('Check Local Regression Simulated Setting Works (accurate estimate to the true target) on main Local function', {
set.seed(1234321)
n=100 #sample size
m=2 # dimension of covariance matrices
M <- array(0,c(m,m,n))
x<- cbind(runif(n,min=-1,max=1),runif(n,min=-1,max=1))
for (i in 1:n){
M[,,i]<- diag((1+x[i,])^(2))#diag((2+x[i,])^(1/3))
}
xout=cbind(0.5,0.5)
M0 <- diag((1+as.vector(xout))^(2))
Cov_est=LocCovReg(x=x,M=M,xout=xout,optns=list(corrOut=FALSE,metric="cholesky")) #using CV
aux1 = sum(abs(Cov_est$Mout[[1]]-M0))
if(aux1<=1e-3){
flag=1
}else{
flag=0
}
expect_equal(flag,1)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.