| beta_bin_meth | R Documentation | 
This a function is addressed to estimate the posterior probabilities of methylation levels, assuming that the methylation levels follows Beta distribution and taking abventage that ehe Beta distribution is a conjugate prior for Binomial distribution.
beta_bin_meth(x, ...)
## S4 method for signature 'matrix_OR_data.frame'
beta_bin_meth(
  x,
  init.pars = NULL,
  via.optim = TRUE,
  loss.fun = c("linear", "huber", "smooth", "cauchy", "arctg"),
  verbose = TRUE,
  ...
)
## S4 method for signature 'GRanges'
beta_bin_meth(
  x,
  init.pars = NULL,
  via.optim = TRUE,
  loss.fun = c("linear", "huber", "smooth", "cauchy", "arctg"),
  verbose = TRUE,
  ...
)
## S4 method for signature 'GRangesList'
beta_bin_meth(
  x,
  init.pars = NULL,
  via.optim = TRUE,
  loss.fun = c("linear", "huber", "smooth", "cauchy", "arctg"),
  num.cores = multicoreWorkers(),
  tasks = 0L,
  verbose = TRUE,
  ...
)
| x | A  | 
| init.pars | initial parameter values. Defaults is NULL and an initial
guess is estimated using  | 
| via.optim | Logical. Whether to estimate beta distribution parameters
via  | 
| loss.fun | Loss function(s) used in the estimation of the best fitted
model to beta distribution (only applied when Bayesian=TRUE; see
(Loss function)). This
fitting uses the approach followed in in the R package
usefr. After
 
 Loss 'linear' function works well for most of the methylation datasets with acceptable quality. | 
Robersy Sanchez (https://genomaths.com)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.